- This is a minor release, mainly motivated by issues concerning
pip install
, e.g. #2426, #3189, #3118, and #3194. With this release, users of Linux and MacOS will be able to runpip install
for the most part. - Refactored linear booster class (
gblinear
), so as to support multiple coordinate descent updaters (#3103, #3134). See BREAKING CHANGES below. - Fix slow training for multiclass classification with high number of classes (#3109)
- Fix a corner case in approximate quantile sketch (#3167). Applicable for 'hist' and 'gpu_hist' algorithms
- Fix memory leak in DMatrix (#3182)
- New functionality
- GPU support
- Python package:
- Correctly handle parameter
verbose_eval=0
(#3115)
- Correctly handle parameter
- R package:
- Eliminate segmentation fault on 32-bit Windows platform (#2994)
- JVM packages
- BREAKING CHANGES: Updated linear modelling algorithms. In particular L1/L2 regularisation penalties are now normalised to number of training examples. This makes the implementation consistent with sklearn/glmnet. L2 regularisation has also been removed from the intercept. To produce linear models with the old regularisation behaviour, the alpha/lambda regularisation parameters can be manually scaled by dividing them by the number of training examples.