2.0.2 Release Note
重要更新
本版本主要是对2.0.1中一些功能和性能问题的修复,并对部分功能点做了增强,重点如下:
paddle.nn.functional.cross_entropy
新增了use_softmax
参数,控制是否在计算交叉熵前先进行softmax运算;并给paddle.nn.functional.softmax_with_cross_entropy
添加了 deprecated 标志,该API将在未来的版本中废弃。- 修复了分布式训练中参数服务器模式下的多个问题。
- 升级Paddle的oneDNN版本至2.2版本,提升了多个模型的预测性能。
训练框架
功能优化
API
- 新增
paddle.io.random_split
与paddle.io.Subset
。(#32090)
问题修复
API
- 修复
paddle.nn.MaxPool3D
和paddle.nn.AvgPool3D
的stride
和padding
没有默认值的问题。(#32014) - 修复支持cudnn的 RNN 创建参数时报告重复创建的问题。(#31916)
- 修复
paddle.nn.functional.cross_entropy
的soft_label
为 True,并指定weight
参数时报错的问题;新增参数use_softmax
,用于控制是否在计算交叉熵前先进行softmax运算;同时,给paddle.nn.functional.softmax_with_cross_entropy
添加 deprecated 说明,该API将会在未来的版本中废弃。(#31953、#32105、#32035) - 修复
paddle.nn.ClipByNorm
在梯度全部为零时产生NaN数值的问题,该问题会导致使用混合精度训练时不收敛。(#32038) - 修复
paddle.stack
内存越界访问的问题。(#32005)
分布式
- 修复参数服务器模式下计算图切分支持GradClip策略的问题。(#31945)
- 修复参数服务器模式下截断高斯分布初始化的问题。(#31945)
- 修复参数服务器模式下Profiler多线程信息打印不准确的问题。(#31945)
- 修复在Python3环境下使用Dataset读取数据时,使用zip输出数据时的兼容性问题。(#31945)
- 清理多余日志信息, 优化
exe.train_from_dataset
输出格式。(#32009)
推理部署
Paddle Inference
功能升级
- Paddle-TRT适配由Paddle 2.0 训练保存的ERNIE/BERT模型。(#31959)
性能优化
- 升级Paddle的oneDNN版本到oneDNN 2.2,多个模型预测性能有提升。(#31270)
- Upgrade onednn to onednn 2.2 which improved many models inference performance. (#31270)
- 添加hard_swish oneDNN算子支持,增加 conv + hard_swish 算子融合, 使得ocr_det模型性能在SkyLake上提升18%。(#31870)
- Add hard_swish oneDNN support and conv + hard_swish fusion, which improved ocr_det model inference performance by 18%. (#31870)
问题修复
- 修复rnn模型动态图转静态图导出保存后,运行时崩溃问题。(#31846)
- 修复了开启oneDNN预测连续多个图像时报错的问题。(#31837)
- Fix continuous images inference failure when oneDNN is ON. (#31837)
- 修复了部署在CPU上的部分oneDNN int8 模型与原量化模型存在精度差的问题。(#31810)
- Fix the accuracy difference between fake quantized models and deployed oneDNN int8 models. (#31810)
- 去除了SkipLayerNorm融合的多余限制条件。 (#32082、#32119)
Important Updates
This version fixed some function and performance issues of PaddlePaddle 2.0.1, and optimized some function. The important updates are as following:
- Add the
use_softmax
parameter topaddle.nn.functional.cross_entropy
, which controls whether to perform softmax operation before calculating the cross entropy; add the deprecated mark topaddle.nn.functional.softmax_with_cross_entropy
, for this API will be deprecated in the future version. - Fix multiple issues of distributed training in parameter server mode。
- Upgrade Paddle's oneDNN version to 2.2, which improves the inference performance of multiple models.
Training Framework
Function Optimization
API
- Add
paddle.io.random_split
andpaddle.io.Subset
. (#32090)
Bug Fixes
API
- Fix the issue that the
stride
andpadding
ofpaddle.nn.MaxPool3D
andpaddle.nn.AvgPool3D
do not have default values. (#32014) - Fix the issue that when RNN supporting cudnn creates parameters, repeated creations are reported. (#31916)
- Fix the issue that when the
soft_label
ofpaddle.nn.functional.cross_entropy
is True, and theweight
parameter is specified, an error will be reported; add theuse_softmax
parameter topaddle.nn.functional.cross_entropy
, which controls whether to perform softmax operation before calculating the cross entropy; add the deprecated mark topaddle.nn.functional.softmax_with_cross_entropy
, for this API will be deprecated in the future version. (#31953, #32105, #32035) - Fix the issue of
paddle.nn.ClipByNorm
generating NaN values as the gradients are all zero, which will lead to non-convergence when using mixed precision training. (#32038) - Fix the issue of accessing array out of bounds in
paddle.stack
. (#32005)
Distributed Training
- Fix the issue that in parameter server mode the calculation graph segmentation supports GradClip strategy.(#31945)
- Fix the initialization of truncated gaussian distribution in parameter server mode.(#31945)
- Fix the issue of incorrectly printing the Profiler's multi-threaded information in parameter server mode.(#31945)
- Fix the Python3 incompatibility issue when data are read by Dataset and output by zip.(#31945)
- Clean up redundant log information and optimize the output format of
exe.train_from_dataset
.(#32009)
Inference Deployment
Paddle Inference
Function Upgrades
- Paddle-TRT adapts to the ERNIE/BERT model trained and saved by PaddlePaddle 2.0.(#31959)
Performance Optimization
- Upgrade onednn to version 2.2, which has improved many models inference performance. (#31270)
- Add hard_swish oneDNN support and conv + hard_swish fusion, which has improved ocr_det model inference performance by 18% on SkyLake. (#31870)
Bug Fixes
- Fix the issue that a run of the rnn model, which is saved after the dynamic graph to static graph, will crash.(#31846)
- Fix the error of inferring continuous images when oneDNN is ON. (#31837)
- Fix the accuracy difference between fake quantized models and deployed oneDNN int8 models. (#31810)
- Remove the redundant constraints of SkipLayerNorm fusion. (#32082、#32119)