pypi paddleocr 3.2.0
v3.2.0

12 days ago

2025.8.21 v3.2.0 released

  • Significant Model Additions:

    • Introduced training, inference, and deployment for PP-OCRv5 recognition models in English, Thai, and Greek. The PP-OCRv5 English model delivers an 11% improvement in English scenarios compared to the main PP-OCRv5 model, with the Thai and Greek recognition models achieving accuracies of 82.68% and 89.28%, respectively.
  • Deployment Capability Upgrades:

    • Full support for PaddlePaddle framework versions 3.1.0 and 3.1.1.
    • Comprehensive upgrade of the PP-OCRv5 C++ local deployment solution, now supporting both Linux and Windows, with feature parity and identical accuracy to the Python implementation.
    • High-performance inference now supports CUDA 12, and inference can be performed using either the Paddle Inference or ONNX Runtime backends.
    • The high-stability service-oriented deployment solution is now fully open-sourced, allowing users to customize Docker images and SDKs as required.
    • The high-stability service-oriented deployment solution also supports invocation via manually constructed HTTP requests, enabling client-side code development in any programming language.
  • Benchmark Support:

    • All production lines now support fine-grained benchmarking, enabling measurement of end-to-end inference time as well as per-layer and per-module latency data to assist with performance analysis.
    • Documentation has been updated to include key metrics for commonly used configurations on mainstream hardware, such as inference latency and memory usage, providing deployment references for users.
  • Bug Fixes:

    • Resolved the issue of failed log saving during model training.
    • Upgraded the data augmentation component for formula models for compatibility with newer versions of the albumentations dependency, and fixed deadlock warnings when using the tokenizers package in multi-process scenarios.
    • Fixed inconsistencies in switch behaviors (e.g., use_chart_parsing) in the PP-StructureV3 configuration files compared to other pipelines.
  • Other Enhancements:

    • Separated core and optional dependencies. Only minimal core dependencies are required for basic text recognition; additional dependencies for document parsing and information extraction can be installed as needed.
    • Enabled support for NVIDIA RTX 50 series graphics cards on Windows; users can refer to the installation guide for the corresponding PaddlePaddle framework versions.
    • PP-OCR series models now support returning single-character coordinates.
    • Added AIStudio, ModelScope, and other model download sources, allowing users to specify the source for model downloads.
    • Added support for chart-to-table conversion via the PP-Chart2Table module.
    • Optimized documentation descriptions to improve usability.

2025.8.21 v3.2.0 发布

  • 重要模型新增:

    • 新增 PP-OCRv5 英文、泰文、希腊文识别模型的训练、推理、部署。其中 PP-OCRv5 英文模型较 PP-OCRv5 主模型在英文场景提升 11%,泰文识别模型精度 82.68%,希腊文识别模型精度 89.28%。
  • 部署能力升级:

    • 全面支持飞桨框架 3.1.0 和 3.1.1 版本。
    • 全面升级 PP-OCRv5 C++ 本地部署方案,支持 Linux、Windows,功能及精度效果与 Python 方案保持一致。
    • 高性能推理支持 CUDA 12,可使用 Paddle Inference、ONNX Runtime 后端推理。
    • 高稳定性服务化部署方案全面开源,支持用户根据需求对 Docker 镜像和 SDK 进行定制化修改。
    • 高稳定性服务化部署方案支持通过手动构造HTTP请求的方式调用,该方式允许客户端代码使用任意编程语言编写。
  • Benchmark支持

    • 全部产线支持产线细粒度 benchmark,能够测量产线端到端推理时间以及逐层、逐模块的耗时数据,可用于辅助产线性能分析。
    • 文档中补充各产线常用配置在主流硬件上的关键指标,包括推理耗时和内存占用等,为用户部署提供参考。
  • Bug修复:

    • 修复模型训练时训练日志保存失败的问题。
    • 对公式模型的数据增强部分进行了版本兼容性升级,以适应新版本的 albumentations 依赖,并修复了在多进程使用 tokenizers 依赖包时出现的死锁警告。
    • 修复 PP-StructureV3 配置文件中的 use_chart_parsing 等开关行为与其他产线不统一的问题。
  • 其他升级:

    • 分离必要依赖与可选依赖。使用基础文字识别功能时,仅需安装少量核心依赖;若需文档解析、信息抽取等功能,用户可按需选择安装额外依赖。
    • 支持 Windows 用户使用英伟达 50 系显卡,可根据安装文档安装对应版本的 paddle 框架。
    • PP-OCR 系列模型支持返回单文字坐标。
    • 模型新增 AIStudio、ModelScope 等下载源。可指定相关下载源下载对应的模型。
    • 支持图表转表 PP-Chart2Table 单功能模块推理能力。
    • 优化部分使用文档中的描述,提升易用性。

New Contributors

Full Changelog: v3.1.1...v3.2.0

Don't miss a new paddleocr release

NewReleases is sending notifications on new releases.