This is the release note of v1.1.0.
New Features
Experimental Hyperband
Hyperband, an extension of the successive halving pruning algorithm, has been introduced as an experimental feature through HyperbandPruner
. It is compatible with RandomSampler
and TPESampler
. See #809.
Breaking Changes
SuccessiveHalvingPruner
minimum resource heuristic
When min_resource
is omitted, instead of defaulting to 1, the SuccessiveHalvingPruner
now uses a heuristic to guess a suitable value. See #812.
Enhancements
- Set
pool_pre_ping=True
for MySQL to avoid connection errors. (#806) - Initial implementation of 'auto' for
min_resource
inSuccessiveHalvingPruner
. (#812) - Update
TPESampler
to supportHyperbandPruner
. (#828) - Fix
XGBoostPruningCallback
to be compatible withxgboost.cv
. (#865, thanks @yutayamazaki!)
Bug Fixes
- Make
PyTorchIgnitePruningHandler
report correct epoch. (#847) - Fix LightGBM tuner raises exception when
max_depth=-1
. (#872) - Sort intermediate values in
plot_intermediate_values
. (#889)
Installation
Documentation
- Fix
KerasPruningCallback
pruning example code. (#832, thanks @harupy!) - Fix docstrings of visualization functions. (#833, thanks @harupy!)
- Update a badge image for Python 3.8. (#836)
- Add a note for JupyterLab users. (#843)
- FAQ documentation bullet list. (#856)
- Add to FAQ dynamically altering search spaces. (#857)
- Elaborate on details of
HyperbandPruner
. (#875) - Update FAQ about trials raising exceptions and returning NaN. (#880)
- Add Neptune to the list of external libraries which use Optuna. (#890)
- Add OptGBM to the
examples/README.md
. (#896) - Add link to examples. (#897)
Examples
- Add
--pruning
option topytorch_lightning_simple.py
. (#794, thanks @yutayamazaki!) - Add FastAI example with
FastAIPruningCallback
. (#848) - Fix TensorFlow eager example with TensorFlow 2.X. (#855, thanks @nuka137!)
- Update the PyTorch Lightning example to support
pytorch_lightning==0.6.0
. (#858) - Add an example for LightGBM Tuner. (#860, thanks @jinnaiyuu!)
- Convert None to NaN before reporting to MLFlow. (#863)
- Remove description about CLI execution of MLFlow example. (#864)
- Fix TensorFlow estimator example with TensorFlow 2.X. (#868, thanks @nuka137!)
- Fix TensorFlow estimator pruning example with TensorFlow 2.X. (#871)