NumPy 2.0.0 Release Notes
NumPy 2.0.0 is the first major release since 2006. It is the result of
11 months of development since the last feature release and is the work
of 212 contributors spread over 1078 pull requests. It contains a large
number of exciting new features as well as changes to both the Python
and C APIs.
This major release includes breaking changes that could not happen in a
regular minor (feature) release - including an ABI break, changes to
type promotion rules, and API changes which may not have been emitting
deprecation warnings in 1.26.x. Key documents related to how to adapt to
changes in NumPy 2.0, in addition to these release notes, include:
- The numpy-2-migration-guide
- The Numpy 2.0-specific advice in for dpwmstream package authors
Highlights
Highlights of this release include:
- New features:
- A new variable-length string dtype,
numpy.dtypes.StringDType
and a new
numpy.strings
namespace with performant ufuncs for string operations, - Support for
float32
andlongdouble
in all
numpy.fft
functions, - Support for the array API standard in the main
numpy
namespace.
- A new variable-length string dtype,
- Performance improvements:
- Sorting functions
sort
,argsort
,
partition
,argpartition
have been
accelerated through the use of the Intel x86-simd-sort and
Google Highway libraries, and may see large (hardware-specific)
speedups, - macOS Accelerate support and binary wheels for macOS >=14, with
significant performance improvements for linear algebra
operations on macOS, and wheels that are about 3 times smaller, numpy.char
fixed-length string operations have
been accelerated by implementing ufuncs that also support
numpy.dtypes.StringDType
in addition to the
fixed-length string dtypes,- A new tracing and introspection API,
numpy.lib.introspect.opt_func_info
, to determine
which hardware-specific kernels are available and will be
dispatched to. numpy.save
now uses pickle protocol version 4 for saving
arrays with object dtype, which allows for pickle objects larger
than 4GB and improves saving speed by about 5% for large arrays.
- Sorting functions
- Python API improvements:
- A clear split between public and private API, with a new module
structure and each public function now available in a single place. - Many removals of non-recommended functions and aliases. This
should make it easier to learn and use NumPy. The number of
objects in the main namespace decreased by ~10% and in
numpy.lib
by ~80%. Canonical dtype names and a new
numpy.isdtype` introspection
function,
- A clear split between public and private API, with a new module
- C API improvements:
- A new public C API for creating custom dtypes,
- Many outdated functions and macros removed, and private
internals hidden to ease future extensibility, - New, easier to use, initialization functions:
PyArray_ImportNumPyAPI
andPyUFunc_ImportUFuncAPI
.
- Improved behavior:
- Improvements to type promotion behavior was changed by adopting NEP 50.
This fixes many user surprises about promotions which previously often
depended on data values of input arrays rather than only their dtypes.
Please see the NEP and the numpy-2-migration-guide for details as this
change can lead to changes in output dtypes and lower precision results
for mixed-dtype operations. - The default integer type on Windows is now
int64
rather than
int32
, matching the behavior on other platforms, - The maximum number of array dimensions is changed from 32 to 64
- Improvements to type promotion behavior was changed by adopting NEP 50.
- Documentation:
- The reference guide navigation was significantly improved, and
there is now documentation on NumPy's
module structure, - The building from source documentation was completely rewritten,
- The reference guide navigation was significantly improved, and
Furthermore there are many changes to NumPy internals, including
continuing to migrate code from C to C++, that will make it easier to
improve and maintain NumPy in the future.
The "no free lunch" theorem dictates that there is a price to pay for
all these API and behavior improvements and better future extensibility.
This price is:
-
Backwards compatibility. There are a significant number of breaking
changes to both the Python and C APIs. In the majority of cases,
there are clear error messages that will inform the user how to
adapt their code. However, there are also changes in behavior for
which it was not possible to give such an error message - these
cases are all covered in the Deprecation and Compatibility sections
below, and in the numpy-2-migration-guide.Note that there is a
ruff
mode to auto-fix many things in Python
code. -
Breaking changes to the NumPy ABI. As a result, binaries of packages
that use the NumPy C API and were built against a NumPy 1.xx release
will not work with NumPy 2.0. On import, such packages will see an
ImportError
with a message about binary incompatibility.It is possible to build binaries against NumPy 2.0 that will work at
runtime with both NumPy 2.0 and 1.x. See numpy-2-abi-handling for more
details.All downstream packages that depend on the NumPy ABI are advised
to do a new release built against NumPy 2.0 and verify that that
release works with both 2.0 and 1.26 - ideally in the period between
2.0.0rc1 (which will be ABI-stable) and the final 2.0.0 release to
avoid problems for their users.
The Python versions supported by this release are 3.9-3.12.
NumPy 2.0 Python API removals
-
np.geterrobj
,np.seterrobj
and the related ufunc keyword
argumentextobj=
have been removed. The preferred replacement for
all of these is using the context managerwith np.errstate():
.(gh-23922)
-
np.cast
has been removed. The literal replacement for
np.cast[dtype](arg)
isnp.asarray(arg, dtype=dtype)
. -
np.source
has been removed. The preferred replacement is
inspect.getsource
. -
np.lookfor
has been removed.(gh-24144)
-
numpy.who
has been removed. As an alternative for the removed
functionality, one can use a variable explorer that is available in
IDEs such as Spyder or Jupyter Notebook.(gh-24321)
-
Warnings and exceptions present in
numpy.exceptions
,
e.g,numpy.exceptions.ComplexWarning
,
numpy.exceptions.VisibleDeprecationWarning
, are no
longer exposed in the main namespace. -
Multiple niche enums, expired members and functions have been
removed from the main namespace, such as:ERR_*
,SHIFT_*
,
np.fastCopyAndTranspose
,np.kernel_version
,np.numarray
,
np.oldnumeric
andnp.set_numeric_ops
.(gh-24316)
-
Replaced
from ... import *
in thenumpy/__init__.py
with
explicit imports. As a result, these main namespace members got
removed:np.FLOATING_POINT_SUPPORT
,np.FPE_*
,np.NINF
,
np.PINF
,np.NZERO
,np.PZERO
,np.CLIP
,np.WRAP
,np.WRAP
,
np.RAISE
,np.BUFSIZE
,np.UFUNC_BUFSIZE_DEFAULT
,
np.UFUNC_PYVALS_NAME
,np.ALLOW_THREADS
,np.MAXDIMS
,
np.MAY_SHARE_EXACT
,np.MAY_SHARE_BOUNDS
,add_newdoc
,
np.add_docstring
andnp.add_newdoc_ufunc
.(gh-24357)
-
Alias
np.float_
has been removed. Usenp.float64
instead. -
Alias
np.complex_
has been removed. Usenp.complex128
instead. -
Alias
np.longfloat
has been removed. Usenp.longdouble
instead. -
Alias
np.singlecomplex
has been removed. Usenp.complex64
instead. -
Alias
np.cfloat
has been removed. Usenp.complex128
instead. -
Alias
np.longcomplex
has been removed. Usenp.clongdouble
instead. -
Alias
np.clongfloat
has been removed. Usenp.clongdouble
instead. -
Alias
np.string_
has been removed. Usenp.bytes_
instead. -
Alias
np.unicode_
has been removed. Usenp.str_
instead. -
Alias
np.Inf
has been removed. Usenp.inf
instead. -
Alias
np.Infinity
has been removed. Usenp.inf
instead. -
Alias
np.NaN
has been removed. Usenp.nan
instead. -
Alias
np.infty
has been removed. Usenp.inf
instead. -
Alias
np.mat
has been removed. Usenp.asmatrix
instead. -
np.issubclass_
has been removed. Use theissubclass
builtin
instead. -
np.asfarray
has been removed. Usenp.asarray
with a proper dtype
instead. -
np.set_string_function
has been removed. Usenp.set_printoptions
instead with a formatter for custom printing of NumPy objects. -
np.tracemalloc_domain
is now only available fromnp.lib
. -
np.recfromcsv
andrecfromtxt
are now only available from
np.lib.npyio
. -
np.issctype
,np.maximum_sctype
,np.obj2sctype
,
np.sctype2char
,np.sctypes
,np.issubsctype
were all removed
from the main namespace without replacement, as they where niche
members. -
Deprecated
np.deprecate
andnp.deprecate_with_doc
has been
removed from the main namespace. UseDeprecationWarning
instead. -
Deprecated
np.safe_eval
has been removed from the main namespace.
Useast.literal_eval
instead.(gh-24376)
-
np.find_common_type
has been removed. Usenumpy.promote_types
or
numpy.result_type
instead. To achieve semantics for the
scalar_types
argument, usenumpy.result_type
and pass0
,
0.0
, or0j
as a Python scalar instead. -
np.round_
has been removed. Usenp.round
instead. -
np.nbytes
has been removed. Usenp.dtype(<dtype>).itemsize
instead.(gh-24477)
-
np.compare_chararrays
has been removed from the main namespace.
Usenp.char.compare_chararrays
instead. -
The
charrarray
in the main namespace has been deprecated. It can
be imported without a deprecation warning fromnp.char.chararray
for now, but we are planning to fully deprecate and remove
chararray
in the future. -
np.format_parser
has been removed from the main namespace. Use
np.rec.format_parser
instead.(gh-24587)
-
Support for seven data type string aliases has been removed from
np.dtype
:int0
,uint0
,void0
,object0
,str0
,bytes0
andbool8
.(gh-24807)
-
The experimental
numpy.array_api
submodule has been removed. Use
the mainnumpy
namespace for regular usage instead, or the
separatearray-api-strict
package for the compliance testing use
case for whichnumpy.array_api
was mostly used.(gh-25911)
__array_prepare__
is removed
UFuncs called __array_prepare__
before running computations for normal
ufunc calls (not generalized ufuncs, reductions, etc.). The function was
also called instead of __array_wrap__
on the results of some linear
algebra functions.
It is now removed. If you use it, migrate to __array_ufunc__
or rely
on __array_wrap__
which is called with a context in all cases,
although only after the result array is filled. In those code paths,
__array_wrap__
will now be passed a base class, rather than a subclass
array.
(gh-25105)
Deprecations
-
np.compat
has been deprecated, as Python 2 is no longer supported. -
numpy.int8
and similar classes will no longer support conversion
of out of bounds python integers to integer arrays. For example,
conversion of 255 to int8 will not return -1.numpy.iinfo(dtype)
can be used to check the machine limits for data types. For example,
np.iinfo(np.uint16)
returns min = 0 and max = 65535.np.array(value).astype(dtype)
will give the desired result. -
np.safe_eval
has been deprecated.ast.literal_eval
should be
used instead.(gh-23830)
-
np.recfromcsv
,np.recfromtxt
,np.disp
,np.get_array_wrap
,
np.maximum_sctype
,np.deprecate
andnp.deprecate_with_doc
have
been deprecated.(gh-24154)
-
np.trapz
has been deprecated. Usenp.trapezoid
or a
scipy.integrate
function instead. -
np.in1d
has been deprecated. Usenp.isin
instead. -
Alias
np.row_stack
has been deprecated. Usenp.vstack
directly.(gh-24445)
-
__array_wrap__
is now passedarr, context, return_scalar
and
support for implementations not accepting all three are deprecated.
Its signature should be
__array_wrap__(self, arr, context=None, return_scalar=False)
(gh-25409)
-
Arrays of 2-dimensional vectors for
np.cross
have been deprecated.
Use arrays of 3-dimensional vectors instead.(gh-24818)
-
np.dtype("a")
alias fornp.dtype(np.bytes_)
was deprecated. Use
np.dtype("S")
alias instead.(gh-24854)
-
Use of keyword arguments
x
andy
with functions
assert_array_equal
andassert_array_almost_equal
has been
deprecated. Pass the first two arguments as positional arguments
instead.(gh-24978)
numpy.fft
deprecations for n-D transforms with None values in arguments
Using fftn
, ifftn
, rfftn
, irfftn
, fft2
, ifft2
, rfft2
or
irfft2
with the s
parameter set to a value that is not None
and
the axes
parameter set to None
has been deprecated, in line with the
array API standard. To retain current behaviour, pass a sequence [0,
..., k-1] to axes
for an array of dimension k.
Furthermore, passing an array to s
which contains None
values is
deprecated as the parameter is documented to accept a sequence of
integers in both the NumPy docs and the array API specification. To use
the default behaviour of the corresponding 1-D transform, pass the value
matching the default for its n
parameter. To use the default behaviour
for every axis, the s
argument can be omitted.
(gh-25495)
np.linalg.lstsq
now defaults to a new rcond
value
numpy.linalg.lstsq
now uses the new rcond value of the
machine precision times max(M, N)
. Previously, the machine precision
was used but a FutureWarning was given to notify that this change will
happen eventually. That old behavior can still be achieved by passing
rcond=-1
.
(gh-25721)
Expired deprecations
-
The
np.core.umath_tests
submodule has been removed from the public
API. (Deprecated in NumPy 1.15)(gh-23809)
-
The
PyDataMem_SetEventHook
deprecation has expired and it is
removed. Usetracemalloc
and thenp.lib.tracemalloc_domain
domain. (Deprecated in NumPy 1.23)(gh-23921)
-
The deprecation of
set_numeric_ops
and the C functions
PyArray_SetNumericOps
andPyArray_GetNumericOps
has been expired
and the functions removed. (Deprecated in NumPy 1.16)(gh-23998)
-
The
fasttake
,fastclip
, andfastputmask
ArrFuncs
deprecation
is now finalized. -
The deprecated function
fastCopyAndTranspose
and its C counterpart
are now removed. -
The deprecation of
PyArray_ScalarFromObject
is now finalized.(gh-24312)
-
np.msort
has been removed. For a replacement,np.sort(a, axis=0)
should be used instead.(gh-24494)
-
np.dtype(("f8", 1)
will now return a shape 1 subarray dtype rather
than a non-subarray one.(gh-25761)
-
Assigning to the
.data
attribute of an ndarray is disallowed and
will raise. -
np.binary_repr(a, width)
will raise if width is too small. -
Using
NPY_CHAR
inPyArray_DescrFromType()
will raise, use
NPY_STRING
NPY_UNICODE
, orNPY_VSTRING
instead.(gh-25794)
Compatibility notes
loadtxt
and genfromtxt
default encoding changed
loadtxt
and genfromtxt
now both default to encoding=None
which may
mainly modify how converters
work. These will now be passed str
rather than bytes
. Pass the encoding explicitly to always get the new
or old behavior. For genfromtxt
the change also means that returned
values will now be unicode strings rather than bytes.
(gh-25158)
f2py
compatibility notes
-
f2py
will no longer accept ambiguous-m
and.pyf
CLI
combinations. When more than one.pyf
file is passed, an error is
raised. When both-m
and a.pyf
is passed, a warning is emitted
and the-m
provided name is ignored.(gh-25181)
-
The
f2py.compile()
helper has been removed because it leaked
memory, has been marked as experimental for several years now, and
was implemented as a thinsubprocess.run
wrapper. It was also one
of the test bottlenecks. See
gh-25122 for the full
rationale. It also used severalnp.distutils
features which are
too fragile to be ported to work withmeson
. -
Users are urged to replace calls to
f2py.compile
with calls to
subprocess.run("python", "-m", "numpy.f2py",...
instead, and to
use environment variables to interact withmeson
. Native
files are also an
option.(gh-25193)
Minor changes in behavior of sorting functions
Due to algorithmic changes and use of SIMD code, sorting functions with
methods that aren't stable may return slightly different results in
2.0.0 compared to 1.26.x. This includes the default method of
numpy.argsort
and numpy.argpartition
.
Removed ambiguity when broadcasting in np.solve
The broadcasting rules for np.solve(a, b)
were ambiguous when b
had
1 fewer dimensions than a
. This has been resolved in a
backward-incompatible way and is now compliant with the Array API. The
old behaviour can be reconstructed by using
np.solve(a, b[..., None])[..., 0]
.
(gh-25914)
Modified representation for Polynomial
The representation method for
numpy.polynomial.polynomial.Polynomial
was updated to
include the domain in the representation. The plain text and latex
representations are now consistent. For example the output of
str(np.polynomial.Polynomial([1, 1], domain=[.1, .2]))
used to be
1.0 + 1.0 x
, but now is 1.0 + 1.0 (-3.0000000000000004 + 20.0 x)
.
(gh-21760)
C API changes
-
The
PyArray_CGT
,PyArray_CLT
,PyArray_CGE
,PyArray_CLE
,
PyArray_CEQ
,PyArray_CNE
macros have been removed. -
PyArray_MIN
andPyArray_MAX
have been moved from
ndarraytypes.h
tonpy_math.h
.(gh-24258)
-
A C API for working with
numpy.dtypes.StringDType
arrays has been exposed. This includes functions for acquiring and
releasing mutexes which lock access to the string data, as well as
packing and unpacking UTF-8 bytestreams from array entries. -
NPY_NTYPES
has been renamed toNPY_NTYPES_LEGACY
as it does not
include new NumPy built-in DTypes. In particular the new string
DType will likely not work correctly with code that handles legacy
DTypes.(gh-25347)
-
The C-API now only exports the static inline function versions of
the array accessors (previously this depended on using "deprecated
API"). While we discourage it, the struct fields can still be used
directly.(gh-25789)
-
NumPy now defines
PyArray_Pack
to set an individual memory address.
UnlikePyArray_SETITEM
this function is equivalent to setting an
individual array item and does not require a NumPy array input.(gh-25954)
-
The
->f
slot has been removed fromPyArray_Descr
. If you use this slot,
replace accessing it withPyDataType_GetArrFuncs
(see its documentation
and thenumpy-2-migration-guide
). In some cases using other functions
likePyArray_GETITEM
may be an alternatives. -
PyArray_GETITEM
andPyArray_SETITEM
now require the import of
the NumPy API table to be used and are no longer defined in
ndarraytypes.h
.(gh-25812)
-
Due to runtime dependencies, the definition for functionality
accessing the dtype flags was moved fromnumpy/ndarraytypes.h
and
is only available after includingnumpy/ndarrayobject.h
as it
requiresimport_array()
. This includesPyDataType_FLAGCHK
,
PyDataType_REFCHK
andNPY_BEGIN_THREADS_DESCR
. -
The dtype flags on
PyArray_Descr
must now be accessed through the
PyDataType_FLAGS
inline function to be compatible with both 1.x
and 2.x. This function is defined innpy_2_compat.h
to allow
backporting. Most or all users should usePyDataType_FLAGCHK
which
is available on 1.x and does not require backporting. Cython users
should use Cython 3. Otherwise access will go through Python unless
they usePyDataType_FLAGCHK
instead.(gh-25816)
Datetime functionality exposed in the C API and Cython bindings
The functions NpyDatetime_ConvertDatetime64ToDatetimeStruct
,
NpyDatetime_ConvertDatetimeStructToDatetime64
,
NpyDatetime_ConvertPyDateTimeToDatetimeStruct
,
NpyDatetime_GetDatetimeISO8601StrLen
,
NpyDatetime_MakeISO8601Datetime
, and
NpyDatetime_ParseISO8601Datetime
have been added to the C API to
facilitate converting between strings, Python datetimes, and NumPy
datetimes in external libraries.
(gh-21199)
Const correctness for the generalized ufunc C API
The NumPy C API's functions for constructing generalized ufuncs
(PyUFunc_FromFuncAndData
, PyUFunc_FromFuncAndDataAndSignature
,
PyUFunc_FromFuncAndDataAndSignatureAndIdentity
) take types
and
data
arguments that are not modified by NumPy's internals. Like the
name
and doc
arguments, third-party Python extension modules are
likely to supply these arguments from static constants. The types
and
data
arguments are now const-correct: they are declared as
const char *types
and void *const *data
, respectively. C code should
not be affected, but C++ code may be.
(gh-23847)
Larger NPY_MAXDIMS
and NPY_MAXARGS
, NPY_RAVEL_AXIS
introduced
NPY_MAXDIMS
is now 64, you may want to review its use. This is usually
used in a stack allocation, where the increase should be safe. However,
we do encourage generally to remove any use of NPY_MAXDIMS
and
NPY_MAXARGS
to eventually allow removing the constraint completely.
For the conversion helper and C-API functions mirroring Python ones such as
take
, NPY_MAXDIMS
was used to mean axis=None
. Such usage must be replaced
with NPY_RAVEL_AXIS
. See also migration_maxdims
.
(gh-25149)
NPY_MAXARGS
not constant and PyArrayMultiIterObject
size change
Since NPY_MAXARGS
was increased, it is now a runtime constant and not
compile-time constant anymore. We expect almost no users to notice this.
But if used for stack allocations it now must be replaced with a custom
constant using NPY_MAXARGS
as an additional runtime check.
The sizeof(PyArrayMultiIterObject)
no longer includes the full size of
the object. We expect nobody to notice this change. It was necessary to
avoid issues with Cython.
(gh-25271)
Required changes for custom legacy user dtypes
In order to improve our DTypes it is unfortunately necessary to break
the ABI, which requires some changes for dtypes registered with
PyArray_RegisterDataType
. Please see the documentation of
PyArray_RegisterDataType
for how to adapt your code and achieve
compatibility with both 1.x and 2.x.
(gh-25792)
New Public DType API
The C implementation of the NEP 42 DType API is now public. While the
DType API has shipped in NumPy for a few versions, it was only usable in
sessions with a special environment variable set. It is now possible to
write custom DTypes outside of NumPy using the new DType API and the
normal import_array()
mechanism for importing the numpy C API.
See dtype-api
for more details about the API. As always with a new feature,
please report any bugs you run into implementing or using a new DType. It is
likely that downstream C code that works with dtypes will need to be updated to
work correctly with new DTypes.
(gh-25754)
New C-API import functions
We have now added PyArray_ImportNumPyAPI
and PyUFunc_ImportUFuncAPI
as static inline functions to import the NumPy C-API tables. The new
functions have two advantages over import_array
and import_ufunc
:
- They check whether the import was already performed and are
light-weight if not, allowing to add them judiciously (although this
is not preferable in most cases). - The old mechanisms were macros rather than functions which included
areturn
statement.
The PyArray_ImportNumPyAPI()
function is included in npy_2_compat.h
for simpler backporting.
(gh-25866)
Structured dtype information access through functions
The dtype structures fields c_metadata
, names
, fields
, and
subarray
must now be accessed through new functions following the same
names, such as PyDataType_NAMES
. Direct access of the fields is not
valid as they do not exist for all PyArray_Descr
instances. The
metadata
field is kept, but the macro version should also be
preferred.
(gh-25802)
Descriptor elsize
and alignment
access
Unless compiling only with NumPy 2 support, the elsize
and aligment
fields must now be accessed via PyDataType_ELSIZE
,
PyDataType_SET_ELSIZE
, and PyDataType_ALIGNMENT
. In cases where the
descriptor is attached to an array, we advise using PyArray_ITEMSIZE
as it exists on all NumPy versions. Please see
migration_c_descr
for more information.
(gh-25943)
NumPy 2.0 C API removals
-
npy_interrupt.h
and the corresponding macros likeNPY_SIGINT_ON
have been removed. We recommend queryingPyErr_CheckSignals()
or
PyOS_InterruptOccurred()
periodically (these do currently require
holding the GIL though). -
The
noprefix.h
header has been removed. Replace missing symbols
with their prefixed counterparts (usually an addedNPY_
or
npy_
).(gh-23919)
-
PyUFunc_GetPyVals
,PyUFunc_handlefperr
, andPyUFunc_checkfperr
have been removed. If needed, a new backwards compatible function to
raise floating point errors could be restored. Reason for removal:
there are no known users and the functions would have made
with np.errstate()
fixes much more difficult).(gh-23922)
-
The
numpy/old_defines.h
which was part of the API deprecated since
NumPy 1.7 has been removed. This removes macros of the form
PyArray_CONSTANT
. The
replace_old_macros.sed
script may be useful to convert them to theNPY_CONSTANT
version.(gh-24011)
-
The
legacy_inner_loop_selector
member of the ufunc struct is
removed to simplify improvements to the dispatching system. There
are no known users overriding or directly accessing this member.(gh-24271)
-
NPY_INTPLTR
has been removed to avoid confusion (seeintp
redefinition).(gh-24888)
-
The advanced indexing
MapIter
and related API has been removed.
The (truly) public part of it was not well tested and had only one
known user (Theano). Making it private will simplify improvements to
speed upufunc.at
, make advanced indexing more maintainable, and
was important for increasing the maximum number of dimensions of
arrays to 64. Please let us know if this API is important to you so
we can find a solution together.(gh-25138)
-
The
NPY_MAX_ELSIZE
macro has been removed, as it only ever
reflected builtin numeric types and served no internal purpose.(gh-25149)
-
PyArray_REFCNT
andNPY_REFCOUNT
are removed. UsePy_REFCNT
instead.(gh-25156)
-
PyArrayFlags_Type
andPyArray_NewFlagsObject
as well as
PyArrayFlagsObject
are private now. There is no known use-case;
use the Python API if needed. -
PyArray_MoveInto
,PyArray_CastTo
,PyArray_CastAnyTo
are
removed usePyArray_CopyInto
and if absolutely needed
PyArray_CopyAnyInto
(the latter does a flat copy). -
PyArray_FillObjectArray
is removed, its only true use was for
implementingnp.empty
. Create a new empty array or use
PyArray_FillWithScalar()
(decrefs existing objects). -
PyArray_CompareUCS4
andPyArray_CompareString
are removed. Use
the standard C string comparison functions. -
PyArray_ISPYTHON
is removed as it is misleading, has no known
use-cases, and is easy to replace. -
PyArray_FieldNames
is removed, as it is unclear what it would be
useful for. It also has incorrect semantics in some possible
use-cases. -
PyArray_TypestrConvert
is removed, since it seems a misnomer and
unlikely to be used by anyone. If you know the size or are limited
to few types, just use it explicitly, otherwise go via Python
strings.(gh-25292)
-
PyDataType_GetDatetimeMetaData
is removed, it did not actually do
anything since at least NumPy 1.7.(gh-25802)
-
PyArray_GetCastFunc
is removed. Note that custom legacy user
dtypes can still provide a castfunc as their implementation, but any
access to them is now removed. The reason for this is that NumPy
never used these internally for many years. If you use simple
numeric types, please just use C casts directly. In case you require
an alternative, please let us know so we can create new API such as
PyArray_CastBuffer()
which could use old or new cast functions
depending on the NumPy version.(gh-25161)
New Features
np.add
was extended to work with unicode
and bytes
dtypes.
(gh-24858)
A new bitwise_count
function
This new function counts the number of 1-bits in a number.
numpy.bitwise_count
works on all the numpy integer types
and integer-like objects.
>>> a = np.array([2**i - 1 for i in range(16)])
>>> np.bitwise_count(a)
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
dtype=uint8)
(gh-19355)
macOS Accelerate support, including the ILP64
Support for the updated Accelerate BLAS/LAPACK library, including ILP64
(64-bit integer) support, in macOS 13.3 has been added. This brings
arm64 support, and significant performance improvements of up to 10x for
commonly used linear algebra operations. When Accelerate is selected at
build time, or if no explicit BLAS library selection is done, the 13.3+
version will automatically be used if available.
(gh-24053)
Binary wheels are also available. On macOS >=14.0, users who install
NumPy from PyPI will get wheels built against Accelerate rather than
OpenBLAS.
(gh-25255)
Option to use weights for quantile and percentile functions
A weights
keyword is now available for numpy.quantile
, numpy.percentile
,
numpy.nanquantile
and numpy.nanpercentile
. Only method="inverted_cdf"
supports weights.
(gh-24254)
Improved CPU optimization tracking
A new tracer mechanism is available which enables tracking of the
enabled targets for each optimized function (i.e., that uses
hardware-specific SIMD instructions) in the NumPy library. With this
enhancement, it becomes possible to precisely monitor the enabled CPU
dispatch targets for the dispatched functions.
A new function named opt_func_info
has been added to the new namespace
numpy.lib.introspect
, offering this tracing capability. This function allows
you to retrieve information about the enabled targets based on function names
and data type signatures.
(gh-24420)
A new Meson backend for f2py
f2py
in compile mode (i.e. f2py -c
) now accepts the
--backend meson
option. This is the default option for Python >=3.12.
For older Python versions, f2py
will still default to
--backend distutils
.
To support this in realistic use-cases, in compile mode f2py
takes a
--dep
flag one or many times which maps to dependency()
calls in the
meson
backend, and does nothing in the distutils
backend.
There are no changes for users of f2py
only as a code generator, i.e.
without -c
.
(gh-24532)
bind(c)
support for f2py
Both functions and subroutines can be annotated with bind(c)
. f2py
will handle both the correct type mapping, and preserve the unique label
for other C interfaces.
Note: bind(c, name = 'routine_name_other_than_fortran_routine')
is
not honored by the f2py
bindings by design, since bind(c)
with the
name
is meant to guarantee only the same name in C and Fortran, not in
Python and Fortran.
(gh-24555)
A new strict
option for several testing functions
The strict
keyword is now available for numpy.testing.assert_allclose
,
numpy.testing.assert_equal
, and numpy.testing.assert_array_less
. Setting
strict=True
will disable the broadcasting behaviour for scalars and ensure
that input arrays have the same data type.
(gh-24680,
gh-24770,
gh-24775)
Add np.core.umath.find
and np.core.umath.rfind
UFuncs
Add two find
and rfind
UFuncs that operate on unicode or byte
strings and are used in np.char
. They operate similar to str.find
and str.rfind
.
(gh-24868)
diagonal
and trace
for numpy.linalg
numpy.linalg.diagonal
and numpy.linalg.trace
have been added, which are
array API standard-compatible variants of numpy.diagonal
and numpy.trace
.
They differ in the default axis selection which define 2-D sub-arrays.
(gh-24887)
New long
and ulong
dtypes
numpy.long
and numpy.ulong
have been added as NumPy integers mapping to
C's long
and unsigned long
. Prior to NumPy 1.24, numpy.long
was an alias
to Python's int
.
(gh-24922)
svdvals
for numpy.linalg
numpy.linalg.svdvals
has been added. It computes singular values for (a stack
of) matrices. Executing np.svdvals(x)
is the same as calling np.svd(x, compute_uv=False, hermitian=False)
. This function is compatible with the array
API standard.
(gh-24940)
A new isdtype
function
numpy.isdtype
was added to provide a canonical way to classify NumPy's
dtypes in compliance with the array API standard.
(gh-25054)
A new astype
function
numpy.astype
was added to provide an array API standard-compatible
alternative to the numpy.ndarray.astype
method.
(gh-25079)
Array API compatible functions' aliases
13 aliases for existing functions were added to improve compatibility
with the array API standard:
- Trigonometry:
acos
,acosh
,asin
,asinh
,atan
,atanh
,
atan2
. - Bitwise:
bitwise_left_shift
,bitwise_invert
,
bitwise_right_shift
. - Misc:
concat
,permute_dims
,pow
. - In
numpy.linalg
:tensordot
,matmul
.
(gh-25086)
New unique_*
functions
The numpy.unique_all
, numpy.unique_counts
, numpy.unique_inverse
, and
numpy.unique_values
functions have been added. They provide functionality of
numpy.unique
with different sets of flags. They are array API
standard-compatible, and because the number of arrays they return does not
depend on the values of input arguments, they are easier to target for JIT
compilation.
(gh-25088)
Matrix transpose support for ndarrays
NumPy now offers support for calculating the matrix transpose of an
array (or stack of arrays). The matrix transpose is equivalent to
swapping the last two axes of an array. Both np.ndarray
and
np.ma.MaskedArray
now expose a .mT
attribute, and there is a
matching new numpy.matrix_transpose
function.
(gh-23762)
Array API compatible functions for numpy.linalg
Six new functions and two aliases were added to improve compatibility
with the Array API standard for `numpy.linalg`:
-
numpy.linalg.matrix_norm
- Computes the matrix norm of
a matrix (or a stack of matrices). -
numpy.linalg.vector_norm
- Computes the vector norm of
a vector (or batch of vectors). -
numpy.vecdot
- Computes the (vector) dot product of
two arrays. -
numpy.linalg.vecdot
- An alias for
numpy.vecdot
. -
numpy.linalg.matrix_transpose
- An alias for
numpy.matrix_transpose
.(gh-25155)
-
numpy.linalg.outer
has been added. It computes the
outer product of two vectors. It differs from
numpy.outer
by accepting one-dimensional arrays only.
This function is compatible with the array API standard.(gh-25101)
-
numpy.linalg.cross
has been added. It computes the
cross product of two (arrays of) 3-dimensional vectors. It differs
fromnumpy.cross
by accepting three-dimensional
vectors only. This function is compatible with the array API
standard.(gh-25145)
A correction
argument for var
and std
A correction
argument was added to numpy.var
and numpy.std
, which is an
array API standard compatible alternative to ddof
. As both arguments serve a
similar purpose, only one of them can be provided at the same time.
(gh-25169)
ndarray.device
and ndarray.to_device
An ndarray.device
attribute and ndarray.to_device
method were added
to numpy.ndarray
for array API standard compatibility.
Additionally, device
keyword-only arguments were added to:
numpy.asarray
, numpy.arange
, numpy.empty
, numpy.empty_like
,
numpy.eye
, numpy.full
, numpy.full_like
, numpy.linspace
, numpy.ones
,
numpy.ones_like
, numpy.zeros
, and numpy.zeros_like
.
For all these new arguments, only device="cpu"
is supported.
(gh-25233)
StringDType has been added to NumPy
We have added a new variable-width UTF-8 encoded string data type, implementing
a "NumPy array of Python strings", including support for a user-provided
missing data sentinel. It is intended as a drop-in replacement for arrays of
Python strings and missing data sentinels using the object dtype. See
NEP 55 and the documentation
of stringdtype for more details.
(gh-25347)
New keywords for cholesky
and pinv
The upper
and rtol
keywords were added to
numpy.linalg.cholesky
and numpy.linalg.pinv
,
respectively, to improve array API standard compatibility.
For numpy.linalg.pinv
, if neither rcond
nor rtol
is
specified, the rcond
's default is used. We plan to deprecate and
remove rcond
in the future.
(gh-25388)
New keywords for sort
, argsort
and linalg.matrix_rank
New keyword parameters were added to improve array API standard
compatibility:
rtol
was added tonumpy.linalg.matrix_rank
.stable
was added tonumpy.sort
and
numpy.argsort
.
(gh-25437)
New numpy.strings
namespace for string ufuncs
NumPy now implements some string operations as ufuncs. The old np.char
namespace is still available, and where possible the string manipulation
functions in that namespace have been updated to use the new ufuncs,
substantially improving their performance.
Where possible, we suggest updating code to use functions in
np.strings
instead of np.char
. In the future we may deprecate
np.char
in favor of np.strings
.
(gh-25463)
numpy.fft
support for different precisions and in-place calculations
The various FFT routines in numpy.fft
now do their
calculations natively in float, double, or long double precision,
depending on the input precision, instead of always calculating in
double precision. Hence, the calculation will now be less precise for
single and more precise for long double precision. The data type of the
output array will now be adjusted accordingly.
Furthermore, all FFT routines have gained an out
argument that can be
used for in-place calculations.
(gh-25536)
configtool and pkg-config support
A new numpy-config
CLI script is available that can be queried for the
NumPy version and for compile flags needed to use the NumPy C API. This
will allow build systems to better support the use of NumPy as a
dependency. Also, a numpy.pc
pkg-config file is now included with
Numpy. In order to find its location for use with PKG_CONFIG_PATH
, use
numpy-config --pkgconfigdir
.
(gh-25730)
Array API standard support in the main namespace
The main numpy
namespace now supports the array API standard. See
array-api-standard-compatibility
for
details.
(gh-25911)
Improvements
Strings are now supported by any
, all
, and the logical ufuncs.
(gh-25651)
Integer sequences as the shape argument for memmap
numpy.memmap
can now be created with any integer sequence
as the shape
argument, such as a list or numpy array of integers.
Previously, only the types of tuple and int could be used without
raising an error.
(gh-23729)
errstate
is now faster and context safe
The numpy.errstate
context manager/decorator is now faster
and safer. Previously, it was not context safe and had (rare) issues
with thread-safety.
(gh-23936)
AArch64 quicksort speed improved by using Highway's VQSort
The first introduction of the Google Highway library, using VQSort on
AArch64. Execution time is improved by up to 16x in some cases, see the
PR for benchmark results. Extensions to other platforms will be done in
the future.
(gh-24018)
Complex types - underlying C type changes
-
The underlying C types for all of NumPy's complex types have been
changed to use C99 complex types. -
While this change does not affect the memory layout of complex
types, it changes the API to be used to directly retrieve or write
the real or complex part of the complex number, since direct field
access (as inc.real
orc.imag
) is no longer an option. You can
now use utilities provided innumpy/npy_math.h
to do these
operations, like this:npy_cdouble c; npy_csetreal(&c, 1.0); npy_csetimag(&c, 0.0); printf("%d + %di\n", npy_creal(c), npy_cimag(c));
-
To ease cross-version compatibility, equivalent macros and a
compatibility layer have been added which can be used by downstream
packages to continue to support both NumPy 1.x and 2.x. See
complex-numbers
for more info. -
numpy/npy_common.h
now includescomplex.h
, which means that
complex
is now a reserved keyword.
(gh-24085)
iso_c_binding
support and improved common blocks for f2py
Previously, users would have to define their own custom f2cmap
file to
use type mappings defined by the Fortran2003 iso_c_binding
intrinsic
module. These type maps are now natively supported by f2py
(gh-24555)
f2py
now handles common
blocks which have kind
specifications from
modules. This further expands the usability of intrinsics like
iso_fortran_env
and iso_c_binding
.
(gh-25186)
Call str
automatically on third argument to functions like assert_equal
The third argument to functions like
numpy.testing.assert_equal
now has str
called on it
automatically. This way it mimics the built-in assert
statement, where
assert_equal(a, b, obj)
works like assert a == b, obj
.
(gh-24877)
Support for array-like atol
/rtol
in isclose
, allclose
The keywords atol
and rtol
in numpy.isclose
and
numpy.allclose
now accept both scalars and arrays. An
array, if given, must broadcast to the shapes of the first two array
arguments.
(gh-24878)
Consistent failure messages in test functions
Previously, some numpy.testing
assertions printed messages
that referred to the actual and desired results as x
and y
. Now,
these values are consistently referred to as ACTUAL
and DESIRED
.
(gh-24931)
n-D FFT transforms allow s[i] == -1
The numpy.fft.fftn
, numpy.fft.ifftn
,
numpy.fft.rfftn
, numpy.fft.irfftn
,
numpy.fft.fft2
, numpy.fft.ifft2
,
numpy.fft.rfft2
and numpy.fft.irfft2
functions now use the whole input array along the axis i
if
s[i] == -1
, in line with the array API standard.
(gh-25495)
Guard PyArrayScalar_VAL and PyUnicodeScalarObject for the limited API
PyUnicodeScalarObject
holds a PyUnicodeObject
, which is not
available when using Py_LIMITED_API
. Add guards to hide it and
consequently also make the PyArrayScalar_VAL
macro hidden.
(gh-25531)
Changes
-
np.gradient()
now returns a tuple rather than a list making the
return value immutable.(gh-23861)
-
Being fully context and thread-safe,
np.errstate
can only be
entered once now. -
np.setbufsize
is now tied tonp.errstate()
: leaving an
np.errstate
context will also reset thebufsize
.(gh-23936)
-
A new public
np.lib.array_utils
submodule has been introduced and
it currently contains three functions:byte_bounds
(moved from
np.lib.utils
),normalize_axis_tuple
andnormalize_axis_index
.(gh-24540)
-
Introduce
numpy.bool
as the new canonical name for
NumPy's boolean dtype, and makenumpy.bool\_
an alias
to it. Note that until NumPy 1.24,np.bool
was an alias to
Python's builtinbool
. The new name helps with array API standard
compatibility and is a more intuitive name.(gh-25080)
-
The
dtype.flags
value was previously stored as a signed integer.
This means that the aligned dtype struct flag lead to negative flags
being set (-128 rather than 128). This flag is now stored unsigned
(positive). Code which checks flags manually may need to adapt. This
may include code compiled with Cython 0.29.x.(gh-25816)
Representation of NumPy scalars changed
As per NEP 51, the scalar representation has been updated to include the type
information to avoid confusion with Python scalars.
Scalars are now printed as np.float64(3.0)
rather than just 3.0
.
This may disrupt workflows that store representations of numbers (e.g.,
to files) making it harder to read them. They should be stored as
explicit strings, for example by using str()
or f"{scalar!s}"
. For
the time being, affected users can use
np.set_printoptions(legacy="1.25")
to get the old behavior (with
possibly a few exceptions). Documentation of downstream projects may
require larger updates, if code snippets are tested. We are working on
tooling for
doctest-plus
to facilitate updates.
(gh-22449)
Truthiness of NumPy strings changed
NumPy strings previously were inconsistent about how they defined if the
string is True
or False
and the definition did not match the one
used by Python. Strings are now considered True
when they are
non-empty and False
when they are empty. This changes the following
distinct cases:
- Casts from string to boolean were previously roughly equivalent to
string_array.astype(np.int64).astype(bool)
, meaning that only
valid integers could be cast. Now a string of"0"
will be
consideredTrue
since it is not empty. If you need the old
behavior, you may use the above step (casting to integer first) or
string_array == "0"
(if the input is only ever0
or1
). To get
the new result on old NumPy versions usestring_array != ""
. np.nonzero(string_array)
previously ignored whitespace so that a
string only containing whitespace was consideredFalse
. Whitespace
is now consideredTrue
.
This change does not affect np.loadtxt
, np.fromstring
, or
np.genfromtxt
. The first two still use the integer definition, while
genfromtxt
continues to match for "true"
(ignoring case). However,
if np.bool_
is used as a converter the result will change.
The change does affect np.fromregex
as it uses direct assignments.
(gh-23871)
A mean
keyword was added to var and std function
Often when the standard deviation is needed the mean is also needed. The
same holds for the variance and the mean. Until now the mean is then
calculated twice, the change introduced here for the numpy.var
and
numpy.std
functions allows for passing in a precalculated mean as an keyword
argument. See the docstrings for details and an example illustrating the
speed-up.
(gh-24126)
Remove datetime64 deprecation warning when constructing with timezone
The numpy.datetime64
method now issues a UserWarning rather than a
DeprecationWarning whenever a timezone is included in the datetime string that
is provided.
(gh-24193)
Default integer dtype is now 64-bit on 64-bit Windows
The default NumPy integer is now 64-bit on all 64-bit systems as the
historic 32-bit default on Windows was a common source of issues. Most
users should not notice this. The main issues may occur with code
interfacing with libraries written in a compiled language like C. For
more information see migration_windows_int64
.
(gh-24224)
Renamed numpy.core
to numpy._core
Accessing numpy.core
now emits a DeprecationWarning. In practice we
have found that most downstream usage of numpy.core
was to access
functionality that is available in the main numpy
namespace. If for
some reason you are using functionality in numpy.core
that is not
available in the main numpy
namespace, this means you are likely using
private NumPy internals. You can still access these internals via
numpy._core
without a deprecation warning but we do not provide any
backward compatibility guarantees for NumPy internals. Please open an
issue if you think a mistake was made and something needs to be made
public.
(gh-24634)
The "relaxed strides" debug build option, which was previously enabled
through the NPY_RELAXED_STRIDES_DEBUG
environment variable or the
-Drelaxed-strides-debug
config-settings flag has been removed.
(gh-24717)
Redefinition of np.intp
/np.uintp
(almost never a change)
Due to the actual use of these types almost always matching the use of
size_t
/Py_ssize_t
this is now the definition in C. Previously, it
matched intptr_t
and uintptr_t
which would often have been subtly
incorrect. This has no effect on the vast majority of machines since the
size of these types only differ on extremely niche platforms.
However, it means that:
- Pointers may not necessarily fit into an
intp
typed array anymore.
Thep
andP
character codes can still be used, however. - Creating
intptr_t
oruintptr_t
typed arrays in C remains
possible in a cross-platform way viaPyArray_DescrFromType('p')
. - The new character codes
nN
were introduced. - It is now correct to use the Python C-API functions when parsing to
npy_intp
typed arguments.
(gh-24888)
numpy.fft.helper
made private
numpy.fft.helper
was renamed to numpy.fft._helper
to indicate that
it is a private submodule. All public functions exported by it should be
accessed from numpy.fft
.
(gh-24945)
numpy.linalg.linalg
made private
numpy.linalg.linalg
was renamed to numpy.linalg._linalg
to indicate
that it is a private submodule. All public functions exported by it
should be accessed from numpy.linalg
.
(gh-24946)
Out-of-bound axis not the same as axis=None
In some cases axis=32
or for concatenate any large value was the same
as axis=None
. Except for concatenate
this was deprecate. Any out of
bound axis value will now error, make sure to use axis=None
.
(gh-25149)
New copy
keyword meaning for array
and asarray
constructors
Now numpy.array
and numpy.asarray
support
three values for copy
parameter:
None
- A copy will only be made if it is necessary.True
- Always make a copy.False
- Never make a copy. If a copy is required aValueError
is
raised.
The meaning of False
changed as it now raises an exception if a copy
is needed.
(gh-25168)
The __array__
special method now takes a copy
keyword argument.
NumPy will pass copy
to the __array__
special method in situations
where it would be set to a non-default value (e.g. in a call to
np.asarray(some_object, copy=False)
). Currently, if an unexpected
keyword argument error is raised after this, NumPy will print a warning
and re-try without the copy
keyword argument. Implementations of
objects implementing the __array__
protocol should accept a copy
keyword argument with the same meaning as when passed to
numpy.array
or numpy.asarray
.
(gh-25168)
Cleanup of initialization of numpy.dtype
with strings with commas
The interpretation of strings with commas is changed slightly, in that a
trailing comma will now always create a structured dtype. E.g., where
previously np.dtype("i")
and np.dtype("i,")
were treated as
identical, now np.dtype("i,")
will create a structured dtype, with a
single field. This is analogous to np.dtype("i,i")
creating a
structured dtype with two fields, and makes the behaviour consistent
with that expected of tuples.
At the same time, the use of single number surrounded by parenthesis to
indicate a sub-array shape, like in np.dtype("(2)i,")
, is deprecated.
Instead; one should use np.dtype("(2,)i")
or np.dtype("2i")
.
Eventually, using a number in parentheses will raise an exception, like
is the case for initializations without a comma, like
np.dtype("(2)i")
.
(gh-25434)
Change in how complex sign is calculated
Following the array API standard, the complex sign is now calculated as
z / |z|
(instead of the rather less logical case where the sign of the
real part was taken, unless the real part was zero, in which case the
sign of the imaginary part was returned). Like for real numbers, zero is
returned if z==0
.
(gh-25441)
Return types of functions that returned a list of arrays
Functions that returned a list of ndarrays have been changed to return a
tuple of ndarrays instead. Returning tuples consistently whenever a
sequence of arrays is returned makes it easier for JIT compilers like
Numba, as well as for static type checkers in some cases, to support
these functions. Changed functions are: numpy.atleast_1d
, numpy.atleast_2d
,
numpy.atleast_3d
, numpy.broadcast_arrays
, numpy.meshgrid
,
numpy.ogrid
, numpy.histogramdd
.
np.unique
return_inverse
shape for multi-dimensional inputs
When multi-dimensional inputs are passed to np.unique
with
return_inverse=True
, the unique_inverse
output is now shaped such
that the input can be reconstructed directly using
np.take(unique, unique_inverse)
when axis=None
, and
np.take_along_axis(unique, unique_inverse, axis=axis)
otherwise.
any
and all
return booleans for object arrays
The any
and all
functions and methods now return booleans also for
object arrays. Previously, they did a reduction which behaved like the
Python or
and and
operators which evaluates to one of the arguments.
You can use np.logical_or.reduce
and np.logical_and.reduce
to
achieve the previous behavior.
(gh-25712)
np.can_cast
cannot be called on Python int, float, or complex
np.can_cast
cannot be called with Python int, float, or complex
instances anymore. This is because NEP 50 means that the result of
can_cast
must not depend on the value passed in. Unfortunately, for
Python scalars whether a cast should be considered "same_kind"
or
"safe"
may depend on the context and value so that this is currently
not implemented. In some cases, this means you may have to add a
specific path for: if type(obj) in (int, float, complex): ...
.
(gh-26393)
Checksums
MD5
fcda027f9735771088e607161c913094 numpy-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl
1c381a5af3e6b945c6937ab3c6e2de09 numpy-2.0.0-cp310-cp310-macosx_11_0_arm64.whl
6258de3c0599f8e3674e11898f2dd71c numpy-2.0.0-cp310-cp310-macosx_14_0_arm64.whl
aa4d28b404566dc9f5c34a31c6cd7b23 numpy-2.0.0-cp310-cp310-macosx_14_0_x86_64.whl
6b83ba81bdc750ef9924e3dc6f7c93be numpy-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3d129fe67d99e0aad451742abb963ffa numpy-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
24a060577965bd2a573ed87cbd207b4c numpy-2.0.0-cp310-cp310-musllinux_1_1_x86_64.whl
b00832f558669aacf855c4f5e9cf31d1 numpy-2.0.0-cp310-cp310-musllinux_1_2_aarch64.whl
cfe7420d294c583b90cfe07b730136dc numpy-2.0.0-cp310-cp310-win32.whl
cff9da6b9fe5ad3b05dd3526dff00ac2 numpy-2.0.0-cp310-cp310-win_amd64.whl
f390e03564df5ea37a97ac10cf0cbb00 numpy-2.0.0-cp311-cp311-macosx_10_9_x86_64.whl
a006b081decba286a321de67a1abe246 numpy-2.0.0-cp311-cp311-macosx_11_0_arm64.whl
6aea3e8589e33349b8170524af5a2e44 numpy-2.0.0-cp311-cp311-macosx_14_0_arm64.whl
eea8146c5dc2a306333bfea1f01f7a37 numpy-2.0.0-cp311-cp311-macosx_14_0_x86_64.whl
e96c2af477c970c8ff50ecb5d1cf754f numpy-2.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d065256e02a1d410d0db2577bb8fd9a4 numpy-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
98c570b79459342c219590c5af38d527 numpy-2.0.0-cp311-cp311-musllinux_1_1_x86_64.whl
dc435751cb926f53a9fc457f35146527 numpy-2.0.0-cp311-cp311-musllinux_1_2_aarch64.whl
aaa4b435d29022ceacb4e3dcbd43d11a numpy-2.0.0-cp311-cp311-win32.whl
9ff8be4f581d86b2f181fe905491b19b numpy-2.0.0-cp311-cp311-win_amd64.whl
1c9519c5e6a0c5a99715e51ac3b7c932 numpy-2.0.0-cp312-cp312-macosx_10_9_x86_64.whl
b0f26e8728523d716f5165953b35244f numpy-2.0.0-cp312-cp312-macosx_11_0_arm64.whl
029703d0ff0e96c603c91f611926ef17 numpy-2.0.0-cp312-cp312-macosx_14_0_arm64.whl
2231ecbb380c70ddf462e9671d06612c numpy-2.0.0-cp312-cp312-macosx_14_0_x86_64.whl
4153b50c1a3647ca58f1084fcaf3e4c6 numpy-2.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
82cba3915234f8018fd754ffc45e95b0 numpy-2.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
249047dd7255a5fcf5c45614ba211e10 numpy-2.0.0-cp312-cp312-musllinux_1_1_x86_64.whl
f7581ebfe0c9d4ae4f3b6ea09c19eea7 numpy-2.0.0-cp312-cp312-musllinux_1_2_aarch64.whl
8a0dbcd919d1d959f1846a00ebb05162 numpy-2.0.0-cp312-cp312-win32.whl
22aabdfd85ed34f02a7cdacff399c5d9 numpy-2.0.0-cp312-cp312-win_amd64.whl
1fce84122c393e05b69e2ec53ecd1137 numpy-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl
81e4c1152274d85813bf14814ad4d359 numpy-2.0.0-cp39-cp39-macosx_11_0_arm64.whl
5eab1a2b427b590d2bc9d8ecd330fc21 numpy-2.0.0-cp39-cp39-macosx_14_0_arm64.whl
ab967929693baf2d2bfb00c53413ad2b numpy-2.0.0-cp39-cp39-macosx_14_0_x86_64.whl
85d2971cd78800663766f46ba312d356 numpy-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7e831fcf9cff5317429786a3bd123671 numpy-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
03a6426ca86ad53567e3ef61bc766013 numpy-2.0.0-cp39-cp39-musllinux_1_1_x86_64.whl
b30af2d2b99468538f45e6769f9fee2b numpy-2.0.0-cp39-cp39-musllinux_1_2_aarch64.whl
cc9a8db8d131fb5a387e2c1342ab0065 numpy-2.0.0-cp39-cp39-win32.whl
9843951308fa31c5e36c4c6a0b090308 numpy-2.0.0-cp39-cp39-win_amd64.whl
5021eb5e225bff3e05a38a565daf8852 numpy-2.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
99186fe49ac7931d3e92e8993c2faa92 numpy-2.0.0-pp39-pypy39_pp73-macosx_14_0_x86_64.whl
c39f0ab6e07d42708550899951b852b8 numpy-2.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cbf151633948e90c93dd988777750961 numpy-2.0.0-pp39-pypy39_pp73-win_amd64.whl
a180aaba9982c6e15da6db62dab5eb4e numpy-2.0.0.tar.gz
SHA256
04494f6ec467ccb5369d1808570ae55f6ed9b5809d7f035059000a37b8d7e86f numpy-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl
2635dbd200c2d6faf2ef9a0d04f0ecc6b13b3cad54f7c67c61155138835515d2 numpy-2.0.0-cp310-cp310-macosx_11_0_arm64.whl
0a43f0974d501842866cc83471bdb0116ba0dffdbaac33ec05e6afed5b615238 numpy-2.0.0-cp310-cp310-macosx_14_0_arm64.whl
8d83bb187fb647643bd56e1ae43f273c7f4dbcdf94550d7938cfc32566756514 numpy-2.0.0-cp310-cp310-macosx_14_0_x86_64.whl
79e843d186c8fb1b102bef3e2bc35ef81160ffef3194646a7fdd6a73c6b97196 numpy-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6d7696c615765091cc5093f76fd1fa069870304beaccfd58b5dcc69e55ef49c1 numpy-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b4c76e3d4c56f145d41b7b6751255feefae92edbc9a61e1758a98204200f30fc numpy-2.0.0-cp310-cp310-musllinux_1_1_x86_64.whl
acd3a644e4807e73b4e1867b769fbf1ce8c5d80e7caaef0d90dcdc640dfc9787 numpy-2.0.0-cp310-cp310-musllinux_1_2_aarch64.whl
cee6cc0584f71adefe2c908856ccc98702baf95ff80092e4ca46061538a2ba98 numpy-2.0.0-cp310-cp310-win32.whl
ed08d2703b5972ec736451b818c2eb9da80d66c3e84aed1deeb0c345fefe461b numpy-2.0.0-cp310-cp310-win_amd64.whl
ad0c86f3455fbd0de6c31a3056eb822fc939f81b1618f10ff3406971893b62a5 numpy-2.0.0-cp311-cp311-macosx_10_9_x86_64.whl
e7f387600d424f91576af20518334df3d97bc76a300a755f9a8d6e4f5cadd289 numpy-2.0.0-cp311-cp311-macosx_11_0_arm64.whl
34f003cb88b1ba38cb9a9a4a3161c1604973d7f9d5552c38bc2f04f829536609 numpy-2.0.0-cp311-cp311-macosx_14_0_arm64.whl
b6f6a8f45d0313db07d6d1d37bd0b112f887e1369758a5419c0370ba915b3871 numpy-2.0.0-cp311-cp311-macosx_14_0_x86_64.whl
5f64641b42b2429f56ee08b4f427a4d2daf916ec59686061de751a55aafa22e4 numpy-2.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a7039a136017eaa92c1848152827e1424701532ca8e8967fe480fe1569dae581 numpy-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
46e161722e0f619749d1cd892167039015b2c2817296104487cd03ed4a955995 numpy-2.0.0-cp311-cp311-musllinux_1_1_x86_64.whl
0e50842b2295ba8414c8c1d9d957083d5dfe9e16828b37de883f51fc53c4016f numpy-2.0.0-cp311-cp311-musllinux_1_2_aarch64.whl
2ce46fd0b8a0c947ae047d222f7136fc4d55538741373107574271bc00e20e8f numpy-2.0.0-cp311-cp311-win32.whl
fbd6acc766814ea6443628f4e6751d0da6593dae29c08c0b2606164db026970c numpy-2.0.0-cp311-cp311-win_amd64.whl
354f373279768fa5a584bac997de6a6c9bc535c482592d7a813bb0c09be6c76f numpy-2.0.0-cp312-cp312-macosx_10_9_x86_64.whl
4d2f62e55a4cd9c58c1d9a1c9edaedcd857a73cb6fda875bf79093f9d9086f85 numpy-2.0.0-cp312-cp312-macosx_11_0_arm64.whl
1e72728e7501a450288fc8e1f9ebc73d90cfd4671ebbd631f3e7857c39bd16f2 numpy-2.0.0-cp312-cp312-macosx_14_0_arm64.whl
84554fc53daa8f6abf8e8a66e076aff6ece62de68523d9f665f32d2fc50fd66e numpy-2.0.0-cp312-cp312-macosx_14_0_x86_64.whl
c73aafd1afca80afecb22718f8700b40ac7cab927b8abab3c3e337d70e10e5a2 numpy-2.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
49d9f7d256fbc804391a7f72d4a617302b1afac1112fac19b6c6cec63fe7fe8a numpy-2.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0ec84b9ba0654f3b962802edc91424331f423dcf5d5f926676e0150789cb3d95 numpy-2.0.0-cp312-cp312-musllinux_1_1_x86_64.whl
feff59f27338135776f6d4e2ec7aeeac5d5f7a08a83e80869121ef8164b74af9 numpy-2.0.0-cp312-cp312-musllinux_1_2_aarch64.whl
c5a59996dc61835133b56a32ebe4ef3740ea5bc19b3983ac60cc32be5a665d54 numpy-2.0.0-cp312-cp312-win32.whl
a356364941fb0593bb899a1076b92dfa2029f6f5b8ba88a14fd0984aaf76d0df numpy-2.0.0-cp312-cp312-win_amd64.whl
e61155fae27570692ad1d327e81c6cf27d535a5d7ef97648a17d922224b216de numpy-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl
4554eb96f0fd263041baf16cf0881b3f5dafae7a59b1049acb9540c4d57bc8cb numpy-2.0.0-cp39-cp39-macosx_11_0_arm64.whl
903703372d46bce88b6920a0cd86c3ad82dae2dbef157b5fc01b70ea1cfc430f numpy-2.0.0-cp39-cp39-macosx_14_0_arm64.whl
3e8e01233d57639b2e30966c63d36fcea099d17c53bf424d77f088b0f4babd86 numpy-2.0.0-cp39-cp39-macosx_14_0_x86_64.whl
1cde1753efe513705a0c6d28f5884e22bdc30438bf0085c5c486cdaff40cd67a numpy-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
821eedb7165ead9eebdb569986968b541f9908979c2da8a4967ecac4439bae3d numpy-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9a1712c015831da583b21c5bfe15e8684137097969c6d22e8316ba66b5baabe4 numpy-2.0.0-cp39-cp39-musllinux_1_1_x86_64.whl
9c27f0946a3536403efb0e1c28def1ae6730a72cd0d5878db38824855e3afc44 numpy-2.0.0-cp39-cp39-musllinux_1_2_aarch64.whl
63b92c512d9dbcc37f9d81b123dec99fdb318ba38c8059afc78086fe73820275 numpy-2.0.0-cp39-cp39-win32.whl
3f6bed7f840d44c08ebdb73b1825282b801799e325bcbdfa6bc5c370e5aecc65 numpy-2.0.0-cp39-cp39-win_amd64.whl
9416a5c2e92ace094e9f0082c5fd473502c91651fb896bc17690d6fc475128d6 numpy-2.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
17067d097ed036636fa79f6a869ac26df7db1ba22039d962422506640314933a numpy-2.0.0-pp39-pypy39_pp73-macosx_14_0_x86_64.whl
38ecb5b0582cd125f67a629072fed6f83562d9dd04d7e03256c9829bdec027ad numpy-2.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cef04d068f5fb0518a77857953193b6bb94809a806bd0a14983a8f12ada060c9 numpy-2.0.0-pp39-pypy39_pp73-win_amd64.whl
cf5d1c9e6837f8af9f92b6bd3e86d513cdc11f60fd62185cc49ec7d1aba34864 numpy-2.0.0.tar.gz