NumPy 1.22.4 Release Notes
NumPy 1.22.4 is a maintenance release that fixes bugs discovered after
the 1.22.3 release. In addition, the wheels for this release are built
using the recently released Cython 0.29.30, which should fix the
reported problems with
debugging.
The Python versions supported for this release are 3.8-3.10. Note that
the Mac wheels are now based on OS X 10.15 rather than 10.6 that was
used in previous NumPy release cycles.
Contributors
A total of 12 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.
- Alexander Shadchin
- Bas van Beek
- Charles Harris
- Hood Chatham
- Jarrod Millman
- John-Mark Gurney +
- Junyan Ou +
- Mariusz Felisiak +
- Ross Barnowski
- Sebastian Berg
- Serge Guelton
- Stefan van der Walt
Pull requests merged
A total of 22 pull requests were merged for this release.
- #21191: TYP, BUG: Fix
np.lib.stride_tricks
re-exported under the... - #21192: TST: Bump mypy from 0.931 to 0.940
- #21243: MAINT: Explicitly re-export the types in
numpy._typing
- #21245: MAINT: Specify sphinx, numpydoc versions for CI doc builds
- #21275: BUG: Fix typos
- #21277: ENH, BLD: Fix math feature detection for wasm
- #21350: MAINT: Fix failing simd and cygwin tests.
- #21438: MAINT: Fix failing Python 3.8 32-bit Windows test.
- #21444: BUG: add linux guard per #21386
- #21445: BUG: Allow legacy dtypes to cast to datetime again
- #21446: BUG: Make mmap handling safer in frombuffer
- #21447: BUG: Stop using PyBytesObject.ob_shash deprecated in Python 3.11.
- #21448: ENH: Introduce numpy.core.setup_common.NPY_CXX_FLAGS
- #21472: BUG: Ensure compile errors are raised correclty
- #21473: BUG: Fix segmentation fault
- #21474: MAINT: Update doc requirements
- #21475: MAINT: Mark
npy_memchr
withno_sanitize("alignment")
on clang - #21512: DOC: Proposal - make the doc landing page cards more similar...
- #21525: MAINT: Update Cython version to 0.29.30.
- #21536: BUG: Fix GCC error during build configuration
- #21541: REL: Prepare for the NumPy 1.22.4 release.
- #21547: MAINT: Skip tests that fail on PyPy.
Checksums
MD5
a19351fd3dc0b3bbc733495ed18b8f24 numpy-1.22.4-cp310-cp310-macosx_10_14_x86_64.whl
0730f9e196f70ad89f246bf95ccf05d5 numpy-1.22.4-cp310-cp310-macosx_10_15_x86_64.whl
63c74e5395a2b31d8adc5b1aa0c62471 numpy-1.22.4-cp310-cp310-macosx_11_0_arm64.whl
f99778023770c12f896768c90f7712e5 numpy-1.22.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
757d68b0cdb4e28ffce8574b6a2f3c5e numpy-1.22.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
50becf2e048e54dc5227dfe8378aae1e numpy-1.22.4-cp310-cp310-win32.whl
79dfdc29a4730e44d6df33dbea5b35b0 numpy-1.22.4-cp310-cp310-win_amd64.whl
8fd8f04d71ead55c2773d1b46668ca67 numpy-1.22.4-cp38-cp38-macosx_10_15_x86_64.whl
41a7c6240081010824cc0d5c02900fe6 numpy-1.22.4-cp38-cp38-macosx_11_0_arm64.whl
6bc066d3f61da3304c82d92f3f900a4f numpy-1.22.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
86d959605c66ccba11c6504f25fff0d7 numpy-1.22.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ae0405894c065349a511e4575b919e2a numpy-1.22.4-cp38-cp38-win32.whl
c9a731d08081396b7a1b66977734d2ac numpy-1.22.4-cp38-cp38-win_amd64.whl
4d9b97d74799e5fc48860f0b4a3b255a numpy-1.22.4-cp39-cp39-macosx_10_14_x86_64.whl
c99fa7e04cb7cc23f1713f2023b4e489 numpy-1.22.4-cp39-cp39-macosx_10_15_x86_64.whl
dda3815df12b8a99c6c3069f69997521 numpy-1.22.4-cp39-cp39-macosx_11_0_arm64.whl
9b7c5b39d5611d92b66eb545d44b25db numpy-1.22.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
90fc45eaf8b8c4fac3f3ebd105a5a856 numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9562153d4a83d773c20eb626cbd65cde numpy-1.22.4-cp39-cp39-win32.whl
711b23acce54a18ce74fc80f48f48062 numpy-1.22.4-cp39-cp39-win_amd64.whl
ab803b24ea557452e828adba1b986af3 numpy-1.22.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
09b3a41ea0b9bc20bd1691cf88f0b0d3 numpy-1.22.4.tar.gz
b44849506fbb54cdef9dbb435b2b1987 numpy-1.22.4.zip
SHA256
ba9ead61dfb5d971d77b6c131a9dbee62294a932bf6a356e48c75ae684e635b3 numpy-1.22.4-cp310-cp310-macosx_10_14_x86_64.whl
1ce7ab2053e36c0a71e7a13a7475bd3b1f54750b4b433adc96313e127b870887 numpy-1.22.4-cp310-cp310-macosx_10_15_x86_64.whl
7228ad13744f63575b3a972d7ee4fd61815b2879998e70930d4ccf9ec721dce0 numpy-1.22.4-cp310-cp310-macosx_11_0_arm64.whl
43a8ca7391b626b4c4fe20aefe79fec683279e31e7c79716863b4b25021e0e74 numpy-1.22.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a911e317e8c826ea632205e63ed8507e0dc877dcdc49744584dfc363df9ca08c numpy-1.22.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9ce7df0abeabe7fbd8ccbf343dc0db72f68549856b863ae3dd580255d009648e numpy-1.22.4-cp310-cp310-win32.whl
3e1ffa4748168e1cc8d3cde93f006fe92b5421396221a02f2274aab6ac83b077 numpy-1.22.4-cp310-cp310-win_amd64.whl
59d55e634968b8f77d3fd674a3cf0b96e85147cd6556ec64ade018f27e9479e1 numpy-1.22.4-cp38-cp38-macosx_10_15_x86_64.whl
c1d937820db6e43bec43e8d016b9b3165dcb42892ea9f106c70fb13d430ffe72 numpy-1.22.4-cp38-cp38-macosx_11_0_arm64.whl
d4c5d5eb2ec8da0b4f50c9a843393971f31f1d60be87e0fb0917a49133d257d6 numpy-1.22.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
64f56fc53a2d18b1924abd15745e30d82a5782b2cab3429aceecc6875bd5add0 numpy-1.22.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fb7a980c81dd932381f8228a426df8aeb70d59bbcda2af075b627bbc50207cba numpy-1.22.4-cp38-cp38-win32.whl
e96d7f3096a36c8754207ab89d4b3282ba7b49ea140e4973591852c77d09eb76 numpy-1.22.4-cp38-cp38-win_amd64.whl
4c6036521f11a731ce0648f10c18ae66d7143865f19f7299943c985cdc95afb5 numpy-1.22.4-cp39-cp39-macosx_10_14_x86_64.whl
b89bf9b94b3d624e7bb480344e91f68c1c6c75f026ed6755955117de00917a7c numpy-1.22.4-cp39-cp39-macosx_10_15_x86_64.whl
2d487e06ecbf1dc2f18e7efce82ded4f705f4bd0cd02677ffccfb39e5c284c7e numpy-1.22.4-cp39-cp39-macosx_11_0_arm64.whl
f3eb268dbd5cfaffd9448113539e44e2dd1c5ca9ce25576f7c04a5453edc26fa numpy-1.22.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
37431a77ceb9307c28382c9773da9f306435135fae6b80b62a11c53cfedd8802 numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc7f00008eb7d3f2489fca6f334ec19ca63e31371be28fd5dad955b16ec285bd numpy-1.22.4-cp39-cp39-win32.whl
f0725df166cf4785c0bc4cbfb320203182b1ecd30fee6e541c8752a92df6aa32 numpy-1.22.4-cp39-cp39-win_amd64.whl
0791fbd1e43bf74b3502133207e378901272f3c156c4df4954cad833b1380207 numpy-1.22.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b4308198d0e41efaa108e57d69973398439c7299a9d551680cdd603cf6d20709 numpy-1.22.4.tar.gz
425b390e4619f58d8526b3dcf656dde069133ae5c240229821f01b5f44ea07af numpy-1.22.4.zip