NumPy 1.20.1 Release Notes
NumPy 1.20.1 is a rapid bugfix release fixing several bugs and
regressions reported after the 1.20.0 release.
Highlights
- The distutils bug that caused problems with downstream projects is
fixed. - The
random.shuffle
regression is fixed.
Contributors
A total of 8 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.
- Bas van Beek
- Charles Harris
- Nicholas McKibben +
- Pearu Peterson
- Ralf Gommers
- Sebastian Berg
- Tyler Reddy
- @Aerysv +
Pull requests merged
A total of 15 pull requests were merged for this release.
- #18306: MAINT: Add missing placeholder annotations
- #18310: BUG: Fix typo in
numpy.__init__.py
- #18326: BUG: don't mutate list of fake libraries while iterating over...
- #18327: MAINT: gracefully shuffle memoryviews
- #18328: BUG: Use C linkage for random distributions
- #18336: CI: fix when GitHub Actions builds trigger, and allow ci skips
- #18337: BUG: Allow unmodified use of isclose, allclose, etc. with timedelta
- #18345: BUG: Allow pickling all relevant DType types/classes
- #18351: BUG: Fix missing signed_char dependency. Closes #18335.
- #18352: DOC: Change license date 2020 -> 2021
- #18353: CI: CircleCI seems to occasionally time out, increase the limit
- #18354: BUG: Fix f2py bugs when wrapping F90 subroutines.
- #18356: MAINT: crackfortran regex simplify
- #18357: BUG: threads.h existence test requires GLIBC > 2.12.
- #18359: REL: Prepare for the NumPy 1.20.1 release.
Checksums
MD5
c4748f4f8f703c5e96027407eca02b08 numpy-1.20.1-cp37-cp37m-macosx_10_9_x86_64.whl
f0bf3a78d6b3a169e5a7fb2637f7fd87 numpy-1.20.1-cp37-cp37m-manylinux1_i686.whl
493c17647c05ca5043bcbab1ac266a74 numpy-1.20.1-cp37-cp37m-manylinux1_x86_64.whl
55ec954fc598c72b2bbf57bfa8b2a701 numpy-1.20.1-cp37-cp37m-manylinux2010_i686.whl
8cee88f9683d208686081522609a8726 numpy-1.20.1-cp37-cp37m-manylinux2010_x86_64.whl
26399d3ededc53b354de78f977a6197e numpy-1.20.1-cp37-cp37m-manylinux2014_aarch64.whl
81051f1e7a79eea8a5aaf5718114ce3a numpy-1.20.1-cp37-cp37m-win32.whl
899488c55824f02a7a6f0451fc86f63f numpy-1.20.1-cp37-cp37m-win_amd64.whl
17f4dae5a0d143b46345a9cf1a8c8dec numpy-1.20.1-cp38-cp38-macosx_10_9_x86_64.whl
f254e98e92b3054c567b6220b37b81d3 numpy-1.20.1-cp38-cp38-manylinux1_i686.whl
483f43a62c7e32ae991990786da90de1 numpy-1.20.1-cp38-cp38-manylinux1_x86_64.whl
bf578b783e36d3feb3344973306a9f96 numpy-1.20.1-cp38-cp38-manylinux2010_i686.whl
f5d6c77c898537017e64ee30b243fdca numpy-1.20.1-cp38-cp38-manylinux2010_x86_64.whl
5cf541a0d5af3d5812d2970a427075fb numpy-1.20.1-cp38-cp38-manylinux2014_aarch64.whl
178315c579c0a70285b8ee502eb498af numpy-1.20.1-cp38-cp38-win32.whl
5164a32e7a00a2b285302b563eb58afe numpy-1.20.1-cp38-cp38-win_amd64.whl
c123dd10788ea9ff788d735cbee444c5 numpy-1.20.1-cp39-cp39-macosx_10_9_x86_64.whl
72282fefe58650c6e7cc41f5b37b8662 numpy-1.20.1-cp39-cp39-manylinux2010_i686.whl
234d57c1a7b1f8b99c054a7a71a51cbe numpy-1.20.1-cp39-cp39-manylinux2010_x86_64.whl
352243d4285970e45d825024ca566d47 numpy-1.20.1-cp39-cp39-manylinux2014_aarch64.whl
a78c863323e0f56210c2e1acaad1bc22 numpy-1.20.1-cp39-cp39-win32.whl
86f9d3f358e7d7896e713bce99f17fdd numpy-1.20.1-cp39-cp39-win_amd64.whl
ed2c81132119fb3c7f73c6a2de306058 numpy-1.20.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl
60a5e2517be19394a7df24f6d4add3f2 numpy-1.20.1.tar.gz
30ea1c7868e73eeff2c86ac465311220 numpy-1.20.1.zip
SHA256
ae61f02b84a0211abb56462a3b6cd1e7ec39d466d3160eb4e1da8bf6717cdbeb numpy-1.20.1-cp37-cp37m-macosx_10_9_x86_64.whl
65410c7f4398a0047eea5cca9b74009ea61178efd78d1be9847fac1d6716ec1e numpy-1.20.1-cp37-cp37m-manylinux1_i686.whl
2d7e27442599104ee08f4faed56bb87c55f8b10a5494ac2ead5c98a4b289e61f numpy-1.20.1-cp37-cp37m-manylinux1_x86_64.whl
4ed8e96dc146e12c1c5cdd6fb9fd0757f2ba66048bf94c5126b7efebd12d0090 numpy-1.20.1-cp37-cp37m-manylinux2010_i686.whl
ecb5b74c702358cdc21268ff4c37f7466357871f53a30e6f84c686952bef16a9 numpy-1.20.1-cp37-cp37m-manylinux2010_x86_64.whl
b9410c0b6fed4a22554f072a86c361e417f0258838957b78bd063bde2c7f841f numpy-1.20.1-cp37-cp37m-manylinux2014_aarch64.whl
3d3087e24e354c18fb35c454026af3ed8997cfd4997765266897c68d724e4845 numpy-1.20.1-cp37-cp37m-win32.whl
89f937b13b8dd17b0099c7c2e22066883c86ca1575a975f754babc8fbf8d69a9 numpy-1.20.1-cp37-cp37m-win_amd64.whl
a1d7995d1023335e67fb070b2fae6f5968f5be3802b15ad6d79d81ecaa014fe0 numpy-1.20.1-cp38-cp38-macosx_10_9_x86_64.whl
60759ab15c94dd0e1ed88241fd4fa3312db4e91d2c8f5a2d4cf3863fad83d65b numpy-1.20.1-cp38-cp38-manylinux1_i686.whl
125a0e10ddd99a874fd357bfa1b636cd58deb78ba4a30b5ddb09f645c3512e04 numpy-1.20.1-cp38-cp38-manylinux1_x86_64.whl
c26287dfc888cf1e65181f39ea75e11f42ffc4f4529e5bd19add57ad458996e2 numpy-1.20.1-cp38-cp38-manylinux2010_i686.whl
7199109fa46277be503393be9250b983f325880766f847885607d9b13848f257 numpy-1.20.1-cp38-cp38-manylinux2010_x86_64.whl
72251e43ac426ff98ea802a931922c79b8d7596480300eb9f1b1e45e0543571e numpy-1.20.1-cp38-cp38-manylinux2014_aarch64.whl
c91ec9569facd4757ade0888371eced2ecf49e7982ce5634cc2cf4e7331a4b14 numpy-1.20.1-cp38-cp38-win32.whl
13adf545732bb23a796914fe5f891a12bd74cf3d2986eed7b7eba2941eea1590 numpy-1.20.1-cp38-cp38-win_amd64.whl
104f5e90b143dbf298361a99ac1af4cf59131218a045ebf4ee5990b83cff5fab numpy-1.20.1-cp39-cp39-macosx_10_9_x86_64.whl
89e5336f2bec0c726ac7e7cdae181b325a9c0ee24e604704ed830d241c5e47ff numpy-1.20.1-cp39-cp39-manylinux2010_i686.whl
032be656d89bbf786d743fee11d01ef318b0781281241997558fa7950028dd29 numpy-1.20.1-cp39-cp39-manylinux2010_x86_64.whl
66b467adfcf628f66ea4ac6430ded0614f5cc06ba530d09571ea404789064adc numpy-1.20.1-cp39-cp39-manylinux2014_aarch64.whl
12e4ba5c6420917571f1a5becc9338abbde71dd811ce40b37ba62dec7b39af6d numpy-1.20.1-cp39-cp39-win32.whl
9c94cab5054bad82a70b2e77741271790304651d584e2cdfe2041488e753863b numpy-1.20.1-cp39-cp39-win_amd64.whl
9eb551d122fadca7774b97db8a112b77231dcccda8e91a5bc99e79890797175e numpy-1.20.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl
9bf51d69ebb4ca9239e55bedc2185fe2c0ec222da0adee7ece4125414676846d numpy-1.20.1.tar.gz
3bc63486a870294683980d76ec1e3efc786295ae00128f9ea38e2c6e74d5a60a numpy-1.20.1.zip