pypi mxnet 1.6.0
Apache MXNet (incubating) 1.6.0

latest releases: 1.9.1, 2.0.0b1, 1.9.0...
4 years ago

Deprecation of Python 2

MXNet community voted to no longer support Python 2 in future releases of MXNet. Therefore, MXNet 1.6 release is going to be the last MXNet release to support Python 2.

New features

NumPy compatible interface and using TVM to generate operators

NumPy has long been established as the standard math library in Python, the most prevalent language for the deep learning community. With this library as the cornerstone, there are now the largest ecosystem and community for scientific computing. The popularity of NumPy comes from its flexibility and generality.

In #14253, the MXNet community reached consensus on moving towards a NumPy-compatible programing experience and committed to a major endeavor on providing NumPy compatible operators.

The primary goal of the projects below is to provide the equivalent usability and expressiveness of NumPy in MXNet to facilitate Deep Learning model development, which not only helps existing deep learning practitioners but also provides people in the existing NumPy community with a shortcut for getting started in Deep Learning. The efforts towards this goal would also help a secondary goal, which is to enable the existing NumPy ecosystem to utilize GPUs and accelerators to speed up large scale computation.

  • Infra to use tvm write op kernels (#15550)
  • fix boolean_mask for 0-size output (#15731)
  • fix tvm cmake (#15781)
  • Numpy-compatible Infra (#15581)
  • [MXNET-1206] Support NDArray indexing with None and Ellipsis (#13143)
  • numpy-compatible sum (#15810)
  • [Numpy] Numpy compatible slicing (#15798)
  • Numpy Tensordot and Dot Operator (#15820)
  • numpy linspace (#15852)
  • tvm infra for op attrs (#15854)
  • Port several np ops to master (#15867)
  • numpy-compatible split upstream (#15841)
  • Numpy-compatible concatenate upstream (#15894)
  • Numpy-compatible stack upstream (#15842)
  • [Numpy] Numpy behavior random.uniform() (#15858)
  • Tvm broadcast backward (#15938)
  • np elemwise unary ops upstream (#15831)
  • [Numpy] random.randint() implemented (#15956)
  • Refines NDArray indexing and adds numpy ndarray indexing [READY FOR REVIEW] (#15942)
  • Port ops from np branch (#16018)
  • numpy-compatible cumsum upstream (#15924)
  • NumPy-compatible infrastructure on Gluon (#16024)
  • [OP] Support range as advanced index for ndarrays (#16047)
  • Numpy compatible max min (#16046)
  • NumPy-compatible Mean, Std and Var (#16014)
  • Add fluent methods mean, std, var for ndarray (#16077)
  • numpy multinomial op (#15878)
  • add numpy operator remainder (#16080)
  • [Numpy] Random.choice implemented (#16089)
  • Fix sample.normal shape inference
  • Numpy add numpy op indices (#15837)
  • [Numpy] Numpy copysign (#15851)
  • numpy operator ravel, derive from reshape (#16016)
  • Add array_function
  • Improved error mesages
  • Fix np.choice
  • add exception check for numpy reshape (#16180)
  • [Numpy] Numpy behavior normal distribution (#16109)
  • fix multinomial bug on gpu (#16204)
  • [Numpy] Differentiable svd (#15795)
  • add epsilon to sum(pvalue) upperbound (#16211)
  • np compatible vstack (#15850)
  • Numpy add numpy op roll (#15902)
  • add numpy compatible trace (#16008)
  • add numpy op hanning, hamming, blackman (#15815)
  • [Numpy]flip (#15819)
  • numpy operator around (#16126)
  • numpy operator arctan2 (#15890)
  • numpy operator nonzero (#15838)
  • numpy operator hypot (#15901)
  • tvm numpy operator deg2rad && rad2deg (#16015)
  • numpy op unique
  • try to fix bug
  • fix memory bug and disable some test
  • fix according to review
  • Numpy operators: lcm, tril, identity and take (#16264)
  • [numpy] Cosmetic improvement on mxnet.numpy builtin op signature in documentation (#16305)
  • Disable Pylint false error in numpy_op_signature (#16370)
  • boolean_mask_assign operator for future boolean indexing (#16361)
  • Implements ldexp. (#15845)
  • Numpy Operators: Inner, Outer, vdot (#15846)
  • Numpy det and slogdet operators (#15861)
  • Fix random op signature
  • fix choice signature
  • add raise test for shape
  • Add boolean ndarray (#15940)
  • global numpy shape flag (#16335)
  • numpy-compatible histogram (#16266)
  • [Numpy] Numpy compatible dstack (#15871)
  • numpy eye op (#16132)
  • Numpy compatible vsplit; minor changes to split (#15983)
  • add numpy op logspace (#15825)
  • add numpy op bitwise_xor, hsplit, moveaxis, rot90 (#16257)
  • Fix optimizer bug for np attribute (#16494)
  • Tests of NumPy interoperability (#16469)
  • improve unary and binary operator handling and refactor tests (#16423)
  • [DOC] Fix numpy op doc (#16504)
  • [Numpy] More numpy dispatch tests (#16426)
  • [Numpy] einsum (#15911)
  • Add test pipeline for USE_TVM_OP=OFF on Unix (#16450)
  • Numpy dispatch test of ...... (#16422)
  • setup and concatenate, copy, expand_dims, expm1 (#16493)
  • add sum for boolean type in mainline (#16436)
  • [Numpy] SVD outputs tuple (#16530)
  • numpy op doc: max, min, prod (#16506)
  • add interface for rand
  • Fix numpy bugs (#16537)
  • pickler override for np ndarrays (#16561)
  • [numpy]op test in new pattern (#16556)
  • Enforce adding documentation for builtin numpy operators (#16575)
  • [Numpy] Support N_D(N>=3) batch_dot (#16586)
  • [Numpy] Loading numpy-incompatible NDArray in numpy-compatible mode (#16597)
  • Fix index overflow bug in einsum (#16589)
  • add npx reshape (#16640)
  • add type switch to weight tensor (#16543)
  • numpy doc enhancement (#16637)
  • Infra for tvm op runtime dispatch (#16100)
  • [NumPy][Operator] NumPy operator may_share_memory and shares_memory (#16533)
  • [Numpy] Numpy operator diff (#15906)
  • Miscellaneous fix for several numpy issues (#16664)
  • [Numpy] implement np.column_stack (#16594)
  • [numpy] add numpy operator : append (#16564)
  • Backport of #16711, #16737, #16408 to 1.6 branch (#16763)
  • Backport to 1.6 (#16773, #16781, #16783, #16716, #16699, #16728, #16769, #16792) (#16832)
  • [Backport][v1.6.x] Fix the wrong result of sum, mean, argmin, argmax when inputs contain inf or nan (#16884)
  • Backport of #16827, #16791 and #16888 to 1.6 branch (#16901)
  • port shape op to 1.6.x (#16912)
  • [Numpy] Fix imperative basic indexing in numpy (#16902) (#16919)
  • Backport #16895, #16922, #16878, #16979 and #16900 to 1.6 (#17029)

Graph optimizations

Pointwise fusion for GPU

DL models, besides compute intensive operations like convolutions and fully connected layers, feature a lot of simple pointwise (aka elementwise) operations (like elementwise addition etc.). Performance of those operations is fully memory bandwidth bound and so limit speedups from newer GPU hardware, which typically has high compute/memory bandwidth ratio. When multiple of such operations are chained one after another, it results in a series of unnecessary stores and loads as well as potential increased memory usage to store the intermediate results. Pointwise fusion helps in alleviating those problems by just-in-time generation of fused operators, which do not store intermediate results in memory, resulting in performance and memory usage improvements.

Eliminate common subexpressions

  • Eliminate common expressions (#15657)

Default MKLDNN Subgraph fusion

  • [MKLDNN] Enable subgraph backend mkldnn by default. (#15518)

New operators

  • [OP] Add a new arange_like operator to contrib (#15400)
  • PDF operators for each distribution for which we have a random sampler (plus also the PDF of the Dirichlet). Supports probabilities and log-probabilities, as well as gradients. (#14617)
  • Group Normalization (#14959)
  • Add RROIAlign (#16017)
  • Add fast implementation of LARS (#16122)
  • Round and sign straight-through-estimators C operators. (#16373)
  • New ops for RCNN + old ops improvements for RCNN (#16215)
  • Comparison ops implemented using mshadow (#16414)
  • Add mask target generator operator for Mask-RCNN (#16268)
  • Move MRCNNMaskTarget op to contrib (#16486)
  • Mxnet allclose (#14443)
  • Aggregated adamw update (#16398)
  • Make mrcnn_mask_target arg mask_size a 2d tuple (#16567)
  • Dgl ops 2 (#16416)
  • Lamb optimizer update (#16715)
  • [OP] changing data type of 't' to int in lamb_update_phase1 (#16903)
  • Multi Precision Lamb Update operator (#16885)
  • Interleaved MHA for CPU path (#17138) (#17211)

Feature improvements

Automatic Mixed Precision

  • [AMP] Move topk from FP16_FP32_FUNCS to FP32_FUNCS (#15342)
  • Conversion from FP32 model to Mixed Precision model (#15118)
  • Update fp16 docs: Block.cast is inplace (#15458)
  • FP16 Support for C Predict API (#15245)
  • Add AMP Conversion support for BucketingModule (#15528)

Gluon Fit API

  • Fixing build for gluon estimator test, including libtvm in pack libs (#16148)
  • [Estimator] handle composite metrics in estimator (#16676)
  • [Estimator] refactor estimator to allow overriding evaluate/fit of a batch (#16678)
  • [Estimator] refactor estimator and clarify docs (#16694)
  • [Gluon] Improve estimator usability and fix logging logic (#16810) (#16846)
  • Backport Gluon estimator changes to 1.6 (#17048)
  • fix parameter names in the estimator api (#17051) (#17162)

MKLDNN

  • Upgrade MKL-DNN submodule to v0.20 release (#15422)
  • Fix quantized concat when inputs are mixed int8 and uint8 (#15693)
  • [MKLDNN]Enhance Quantization APIs and Tutorial (#15448)
  • Add quantization support for GluonCV (#15754)
  • add int8 bn mkldnn implementation and test (#15664)
  • [Quantization]support exclude operators while quantization (#15910)
  • [MKLDNN]Support fullyconnected and element-wise ops fusion (#15950)
  • Disable test coverage for Clang MKLDNN (#15977)
  • update support MKLDNN BN conditions (#15870)
  • [MKLDNN] Fix out of bound access of req vector (#16000)
  • add uint8 bn mkldnn implementation (#16003)
  • Improve quantization flow (#15961)
  • [MKLDNN] fix uint8 batch norm memory misuse (#16034)
  • MKL-DNN RNN checks NDArray version (#16071)
  • Float64 fallback for mkldnn subgraph and rnn op (#15853)
  • Update MKL-DNN dependency (#16073)
  • Integrate MKL-DNN leakyrelu (#16075)
  • [MKLDNN] NDArray reorder in C API and deconv (#16265)
  • Fix mkldnn reshape (#16455)
  • [MKLDNN] Fix uint quantized fc when not fusing with requantize (#16523)
  • [MKLDNN]Fix reorder2default (#16602)
  • Upgrade MKL-DNN dependency to v1.0 (#16555)
  • Revert "[MKLDNN]Fix reorder2default (#16602)" (#16697)
  • [v1.6.x] Backport #16837 into v1.6.x (#16847)
  • Initial checkin (#16856) (#16872)

Large tensor support

  • [MXNET-1413] Adding Large Tensor support for sort operators (#15170)
  • Large Index Support for Slice (#15593)
  • Add large tensor support binary arithmetic (#15785)
  • Large tensor support for random ops (#15783)
  • Add Large Tensor Support for Sequence, NN Ops (#15807)
  • Add power, exponent, log ops large tensor support (#15794)
  • removing unnecessary int64 C apis that were added to support Large Tensors and Vectors (#15944)
  • creating ndarray directly using mxnet ndarray primitives to reduce memory footprint of tests for topk, sort and argsort (#15900)
  • Adding tests to verify support for Large Tensors in additional Ops along with new C_Apis supporting 64bit indexing (#15895)
  • Added tests to verify Large Vector Support for initial set of ops (#15943)
  • Added more tests for Large Indices (#15960)
  • Add Large tensor vector test cases (#15941)
  • Test large vector mean operator and fix a few bugs (#16079)
  • Reducing memory footprint of one_hot for Large Array Testing (#16136)
  • removing MXNDArrayLoadFromBuffer64 and MXNDArrayLoad64 (#16203)
  • Fix large array tests (#16328)
  • added more tests to verify support for large vector (#16477)
  • added support for large tensors for Dropout operator and tests to verify support for more operators (#16409)
  • adding large tensor support for add_n and tests for more ops (#16476)
  • adding large tensor support for pad operator (#15126)
  • Added large tensor support and test for gather_nd (#16371)
  • Large Vector tests for DGL Ops Part 2 (#16497)
  • Showing proper error message when an attempt is made to create large tensor but MXNet is not built with it (#16570)

TensorRT integration

  • enable TensorRT integration with cpp api (#15335)
  • Add unit tests for TensorRT integration and fix some bugs (#15399)

Higher order gradient support

  • [MXNET-978] Higher order gradient for sigmoid (#15288)
  • [MXNET-978] Higher Order Gradient Support reciprocal, abs. (#15413)
  • [MXNET-978] Add higher order gradient support tan, tanh (#15253)
  • [MXNET-978] Higher Order Gradient Support arctan, arctanh, radians. (#15531)
  • [MXNET-978] Higher Order Gradient Support sqrt, cbrt. (#15474)
  • [MXNET-978] Higher Order Gradient Support clip, dropout. (#15746)
  • [MXNET-978] Higher Order Gradient Support sinh, cosh. (#15412)
  • [MXNET-978] n-th order gradient test support. (#15611)
  • [MXNET-978] Fully connected, higher order grad (#14779)
  • [MXNET-978] Higher Order Gradient Support arcsinh, arccosh. (#15530)

Operator improvements

  • broadcast axis is alias to broadcast axes; doc fix (#15546)
  • Utility to help developers debug operators: Tensor Inspector (#15490)
  • Softmax with length (#15169)
  • in-place reshape ops (#14053)
  • Add missing default axis value to symbol.squeeze op (#15707)
  • Add matrix determinant operator in linalg (#15007)
  • Add fp16 support for topk (#15560)
  • [MXNET-1399] multiclass-mcc metric enhancements (#14874)
  • new raise mode for nd.take and fix backward for wrap mode (#15887)

Profiler

  • Fixing duplication in operator profiling (#15240)
  • Custom Operator Profiling Enhancement (#15210)
  • [Opperf] Make module/namespace of the operator parameterized (#15226)
  • Opperf: Support Python<3.6 (#15487)
  • Add transpose_conv, sorting and searching operator benchmarks to Opperf (#15475)
  • Deprecate USE_PROFILER flag (#15595)
  • Update profiler.md (#15477)
  • [Opperf] Add array rearrange operators to opperf (#15606)
  • [OpPerf] PDF Random ops fix (#15661)
  • [Opperf] Add optimizer update operator benchmarks to opperf (#15522)
  • fix broadcast op param (#15714)
  • [OpPerf] Profiler flag for Python, Cpp (#15881)
  • [Opperf] Filter out deprecated ops (#15541)
  • [OpPerf] Handle positional arguments (#15761)
  • [OpPerf] Take care of 4d param (#15736)
  • Add Median,p50,p99 to python profiler (#15953)
  • adding "total" (total time) to profiler aggregate stats sorting criteria (#16055)

ONNX import/export

  • Correct ONNX documentation (#15914)
  • [MXNET-895] ONNX import/export: TopK (#13627)

Runtime discovery of features

  • Making Features as a singleton for improved caching (#15835)

Bug fixes

  • [bug] fix higher grad log (#15120)
  • Showing proper error when csr array is not 2D in shape. (#15242)
  • add 'asnumpy' dtype option to check_symbolic_backward (#15186)
  • point fix the vector declaration in MultiBoxDetection (#15300)
  • Temporarily Commenting out Flaky Test (#15436)
  • Fix memory leak in NaiveEngine (#15405)
  • fix nightly CI failure (#15452)
  • Small typo fixes in batch_norm-inl.h (#15527)
  • Bypass cuda/cudnn checks if no driver. (#15551)
  • Julia path patch (#15561)
  • Fix AMP Tutorial failures (#15526)
  • Fix warnings in CLang: (#15270)
  • Fix dumps for Constant initializer (#15150)
  • fix normalize mean error bug (#15539)
  • [fix] print self in warning. (#15614)
  • [MXNET-1411] solve pylint error issue#14851 (#15113)
  • [Flaky test] Skip test_operator_gpu.test_convolution_independent_gradients (#15631)
  • Fix subgraph with custom_op (#15671)
  • Fix USE_BLAS == openblas check (#15691)
  • update previous flaky naive engine test (#15651)
  • make TransposeShape infer shape form both sides (#15713)
  • Skip Flaky Test (#15722)
  • Revert "Dynamic Library Loading Support" (#15755)
  • Fix flaky test test_global_metric (#15756)
  • Fix PR #15489 (Dynamic Library Loading Support) (#15760)
  • Refactor LibraryInitializer so it's thread safe. Fixes random sporadical concurrency crashes. (#15762)
  • Fix backward_clip num inputs and type of clip params (#15688)
  • fixing problem with existing Singleton Caching (#15868)
  • Allow operators with multiple outputs in get_atomic_symbol (#15740)
  • Fix ConcatType backward type inference (#15829)
  • Add disable attr to subgraph property (#15926)
  • Re-enable flaky test_prelu (#15777)
  • declare explicitly the tblob default assign operator and copy constructor (#15937)
  • Discard needless test cases in test_convolution_independent_gradients (#15939)
  • fix naive engine for multi-threaded inference (#15574)
  • Fix get_rows_per_block (#15979)
  • Fix a memory misalignment in topk operator (#15948)
  • Decouple dtype from shape for Random multinomial (#15980)
  • Fix dtype inference in arange_like operator (#15930)
  • Disable laop_6 (#15976)
  • Fix flaky clojure profile test (#16058)
  • fix test_pick test time is too long (#16066)
  • [fix] Support nullop in transpose (#15865)
  • fix flaky test (#16074)
  • fix some test files test time is too long (#16067)
  • Fix gradient tensor mutate in {adam/ftrl/rmprop/rmspropalex}_update. (#15768)
  • Fix unary operator ceil/floor/trunc when data type is integer (#14251)
  • Fix failing tests (#16117)
  • Fixes NAG optimizer #15543 (#16053)
  • avoid test relu at the origin due to discontinuous gradient (#16133)
  • Fix remaining errors reported by D2L (#16157)
  • use 1E-4 in groupnorm test(#16169)
  • Sequence last fix (#16156)
  • fixing test for model compatibility checker (#16159)
  • assert_allclose -> rtol=1e-10 (#16198)
  • [MEMORY] retry GPU memory allocation if fragmented (#16194)
  • improve dataloader signals and messages (#16114)
  • Update ndarray.py (#16205)
  • fix flaky test (#16191)
  • Solve #14116, #15143 (#15144)
  • [MXNET-1422] Fix wrong results of min([inf, inf]) and max([-inf,-inf]) (#16226)
  • Fix inconsistent interpolation method values (#16212)
  • set fixed seed for profiler (#16155)
  • Fix MXNDArrayGetData (#16289)
  • fix atol for test_preloaded_multi_sgd (#16356)
  • Fix windows flakiness (#16415)
  • cuDNN non-persistant bidirectional RNN dgrad sync fix (#16391)
  • [BUGFIX] Minor type issues in Squeeze (#16448)
  • Fix Nightly Tests for Binaries (#16451)
  • Fix dtype bug (#16467)
  • Fix flakey pylint CI failures (#16462)
  • Load NDArray only to GPU if GPU is present (#16432)
  • Bug fix for the input of same axes of the swapaxes operator (#16513)
  • Fix learning rate scheduler being unexpectedly overwritten by optimizer's default value (#16487)
  • disable tests (#16536)
  • fix pylint in CI (#16540)
  • image crop gpu (#16464)
  • Build dmlc-core with old thread_local implementation (#16526)
  • fix doc for topk (#16571)
  • RNNOp to call cudaEventCreate lazily (#16584)
  • add encoding to the stub files for potential utf8 char in doc strings (#16580)
  • Surpress subgraph log in CI (#16607)
  • Fix dequantize memory corruption (#16606)
  • Fix for wrong reqs set after switching from training to inference (#16553)
  • Disables test_bulking_operator_gpu due to flakiness (#16611)
  • Imagenet inference to nightly fix (#16599)
  • Move some subgraph verbose to MXNET_SUBGRAPH_VERBOSE=2 (#16622)
  • RNNOp only call cuda/cudnn if GPU ctx is requested (#16632)
  • fix bad encode (#16641)
  • Disable float16 test (#16643)
  • Fix GetMKLDNNData for delay alloc (#16618)
  • Move ops which don't support FP16 dtype to FP32 list (#16668)
  • no such method => modified function args (#16610)
  • fix cuDNN RNN dtype_with_fallback_ bug (#16671)
  • Add check if scipy is imported in sparse.py (#16574)
  • Added launch bounds to the reduce kernels (#16397)
  • fix install dir (#16690)
  • fix binary dependencies in CD and nightly (#16693)
  • Fix SliceChannel Type inference (#16748) (#16797)
  • fix flakiness of test_np_mixed_precision_binary_funcs (#16873)
  • Fix test_gluon.py:test_sync_batchnorm when number of GPUS > 4 (#16835)
  • Omp fork numthreads fix 1.6 (#17000)
  • [BUGFIX] Fix race condition in kvstore.pushpull (#17007) (#17052)
  • Backport #17002, #17068 and #17114 to 1.6 branch (#17137)
  • Backport 3rdparty/openmp fixes (#17193)
  • fix norm sparse fallback (#17149)

Front end API

  • Expose get_all_registered_operators and get_operator_arguments in the… (#15364)
  • Add magic method abs to NDArray and Symbol. (#15680)
  • Dynamic Library Loading Support (#15489)
  • [MXNET-1294] Add KVSTORE PushPull API (#15559)

Gluon

  • [Dataset] Add take, filter, sample API to dataset (#16078)
  • Add register_op_hook for gluon (#15839)
  • [Dataset] add shard API (#16175)
  • Add list_ctx to ParameterDict (#16185)
  • [Gluon] Support None argument in HybridBlock (#16280)
  • Aggregated zero grad (#16446)
  • try to fix block (#16465)
  • [Gluon] Don't serialize shared parameters twice (#16582)
  • Initializer.eq (#16680)

Symbol

  • Add symbol api for randn and fix shape issue for randn ndarray and symbol api (#15772)
  • Graph Partition API (#15886)

Language Bindings

Python

MXNet community voted to no longer support Python 2 in future releases of MXNet. Therefore, MXNet 1.6 release is going to be the last MXNet release to support Python 2.

C/C++

  • [C++] Improve inference script to support benchmark on Imagenet (#15164)
  • C Api for simplebind, fix comment for trigoops, add atol to assert (#16585)

Clojure

  • Extend Clojure BERT example (#15023)
  • [Clojure] Add fastText example (#15340)
  • make clojure api generator tests less brittle (#15579)

Julia

  • add julia env settings (#15523)
  • julia: bump window prebult binary version to v1.5.0 (#15608)
  • julia: remove Travis CI related files (#15616)
  • julia: bump binding version to v1.6.0 (#15607)
  • julia: rename build env var MXNET_HOME to MXNET_ROOT (#15568)
  • Revert "julia: rename build env var MXNET_HOME to MXNET_ROOT (#15568)" (#16147)
  • julia: fix mx.forward kwargs checking (#16138)
  • julia: implement context.num_gpus (#16236)
  • julia: add AbstractMXError as parent type (#16235)
  • [MXNET-1430] julia: implement context.gpu_memory_info (#16324)
  • julia/docs: more DRY on page rendering (#16396)

Perl

  • [Perl] - simplify aliasing strategy (#15395)
  • [Perl] - ndarray to native array conversion fix (#16635)

Scala

  • Add Sparse NDArray support for Scala (#15378)
  • fix the bug on Scala Sparse (#15500)
  • fix heap-use-after-free in scala (#15503)
  • Bump Scala version to 1.6 (#15660)
  • Fix Scala Symbolic API some/Some typo (#15687)
  • Faster Scala NDArray to BufferedImage function (#16219)

Performance improvements

  • Proper bulking of ops not using FCompute (#15272)
  • improve layernorm CPU performance (#15313)
  • Efficient MXNet sampling in the multinomial distribution (#15311)
  • Revert default return type for indices in argsort() and topk() back to float32 (#15360)
  • Use omp threads for cpu data loader (#15379)
  • Accelerate ROIPooling layer (#14894)
  • Avoid memory copy for dropout inference (#15521)
  • Add omp parallel optimization for _contrib_BilinearReisze2D (#15584)
  • Softmax optimization for GPU (#15545)
  • Speed up group executor (#16069)
  • FullyConnected Bias performance improvement on GPU (#16039)
  • Embedding gradient performance optimization on GPU (#16355)
  • Faster Transpose 2D (#16104)
  • Pseudo 2D transpose kernel (#16229)
  • Faster general take (#16615)

Example and tutorials

  • [TUTORIAL] Gluon performance tips and tricks (#15427)
  • Updating profiler tutorial to include new custom operator profiling (#15403)
  • [TUTORIAL] Gluon and Sparse NDArray (#15396)
  • [TUTORIAL] Revise Naming tutorial (#15365)
  • Revise Symbol tutorial (#15343)
  • Two fixes for info_gan.md example Code (#15323)
  • Rebase #13757 to master (#15189)
  • Tensor Inspector Tutorial (#15517)
  • logging (#15106)
  • update profiler tutorial (#15580)
  • [MXNET-1358] Fit api tutorial (#15353)
  • Tutorials nighly fix (#16179)
  • Update add_op_in_backend.md (#16403)
  • typo fix in r doc lstm tutorial (#16546)
  • [MKL-DNN] Add mxnet mkldnn cmake tutorial (#16688)

Website and documentation

  • [DOC] Clarify that global pooling is going to reset padding (#15269)
  • Update sparse_retain Documentation (#15394)
  • nano instructions (#15117)
  • remove comments from nano instructions (#15433)
  • REAME MTCNN Link URL Error in original website (#15020)
  • Update Horovod docs links in README (#15366)
  • fix doc for sort and argsort (#15317)
  • fix comment (#15481)
  • Improve docs for AMP (#15455)
  • [Doc] Add MKL install method apt/yum into tutorial (#15491)
  • Julia docs (#15454)
  • Docs: Fix misprints (#15505)
  • website build for julia: fix path to be static (#15554)
  • some minor typos/clarifications (#15538)
  • refine Nano setup directions (#15524)
  • [Doc] add squeeze to Array change shape (#15549)
  • fix typo (#15648)
  • Fix url (404 error) (#15683)
  • update julia install doc (#15609)
  • [DOC] refine autograd docs (#15109)
  • [DOC] Fix many arguments in the doc: reshape_like, arange_like, shape_array (#15752)
  • Add Gather_nd Scatter_nd to NDArray API category doc (#15689)
  • [Dependency Update] [Doc] move the general prerequisite software to the top (#15896)
  • typo in docs (#16094)
  • [WIP] New Website: New Docs [1/3] (#15884)
  • [DOC] Fix doc for nn.Embedding, nn.Dense and nd.Embedding (#15869)
  • [DOC] Consistent capitalization: mxnet -> MXNet, scala -> Scala (#16041)
  • New Website: Remove Old Content [2/3] (#15885)
  • New Website: New Pipeline [3/3] (#15883)
  • Update KL Divergence formula (#16170)
  • fix broken links (#16255)
  • redirect to the 404 page (#16287)
  • add google-analytics config (#16271)
  • Fixing links for website + Fixing search (#16284)
  • Minor fix in ToTensor documentation. (#16299)
  • adding redirects so that old website API links surfaced from searches (#16342)
  • Fix code block formatting in Why MXNet doc page (#16334)
  • Julia: add API docs back (#16363)
  • Change mailing list url in footer to point to instructions about how to subscribe instead (#16384)
  • Add instructions to report a security vulnerability (#16383)
  • [DOC] fix installation selector wrong history (#16381)
  • Beta build (#16411)
  • [WIP] Improving Python Docs API (#16392)
  • fix autodoc for spurrious toggles (#16452)
  • [Doc] Update the download page with 1.5.1 release (#16442)
  • Fixing broken links (#16500)
  • add binary and docs build command options (#16514)
  • add option to remove indexes (#16525)
  • Correct Google Analytics Tracker (#16490)
  • [Doc] Use mirror link in the download page (#16501)
  • checking broken link fixes work (#16538)
  • detect number of procs during sphinx build (#16512)
  • fixed broken links across multiple files (#16581)
  • fix missing docs due to git add issues (#16496)
  • second round of fixing broken links in multiple files (#16598)
  • Python Docstring Convetion (#16550)
  • [MXNET-1434] Fix a broken link for basic C++ tutorial (#16461)
  • Fix python doc build issue (#16630)
  • fixing broken links in multiple files - round 3 (#16634)

CI/CD

  • Fix build_ccache_wrappers: (#14631)
  • Remove mhard-float option. This is already deprecated by Google. (#15435)
  • CI: upgrade Julia version from 1.0.3 to 1.0.4 (#15502)
  • Add -R option to ci/build.py to avoid rebuilding containers (#15426)
  • [Dependency Update] Bump up the CI Nvidia docker to CUDA 10.1 (#14986)
  • fixed config.mk and Makefile bugs for installing mkl (#15424)
  • Add -DMXNET_USE_OPENMP to Makefiles so libinfo gets updated accordingly (#15498)
  • [Dependency Update] Dependency update doc (#15045)
  • Remove Scala package test on build (#15915)
  • Refactor for windows CI 'out of heap space' errors (#15922)
  • Fix Nightly Maven GPU (#15989)
  • Windows cmake flags cleanup (#16013)
  • Disable flaky test in test_amp_conversion (#16031)
  • Updates git_init Jenkins utility function to support checking out a particular commit id
  • Adds artifact repository scripts
  • Adds CD pipeline framework
  • Adds static libmxnet release pipeline
  • Updates CD pipeline
  • Adds documentation
  • Updates kvstore functions to use pushd and popd
  • Throws exceptions instead o magic numbers
  • Updates artifact repository cli to use --libtype instead of --static or --dynamic
  • Clarifies ci_utils and cd_utils origin remark
  • Adds clarifying note on why ubuntu 14.04 is being used for compilation
  • Removes MXNET_SHA
  • Removes set_release_job_name
  • Adds license headers
  • Updates artifact repository to expect licenses
  • Moves ci/cd to cd directory
  • Takes downstream job name from environment
  • Updates order of parameters
  • Updates job type parameter to dropdown
  • Adds libmxnet feature extraction code comments
  • Removes ccache setup from static build
  • Disable test coverage of C++ codebase on CI (#15981)
  • Update readme and project.clj comment (#16084)
  • Enable tvm_op for ci (#15889)
  • Not to search for coverage files when none exist (#16107)
  • Fixes openblas installation for static build
  • Update python dependencies (#16105)
  • CD Fixes (#16127)
  • Adds dynamic libmxnet to CD pipeline (#16163)
  • Fix README Build Status (#16183)
  • subscribe to build and CD changes (#16192)
  • [CD] Add COMMIT_ID param to release job (#16202)
  • Fix lack of dylib support in Makefile when use lapack (#15813)
  • Removes git status update stop gap solution (#16285)
  • add mkl installation temp fix (#16304)
  • add 'Release' cmake flag (#16294)
  • S3 upload artifacts (#16336)
  • Fix nightly scala pipeline (#16362)
  • remove redundant branch name (#16372)
  • Skipping installing nightly test (#16418)
  • Adds PyPI CD Pipeline (#16190)
  • upgrade the pytest version (#16429)
  • Revert "add mkl installation temp fix (#16304)" (#16369)
  • increase docker cache timeout (#16430)
  • Adds pip requirements file to nightly gpu ci image (#16472)
  • [CD] Adds python docker pipeline (#16547)
  • Move imagenet inference to nightly (#16577)
  • Backport #16980 #17031 #17018 #17019 to 1.6 branch (#17213)

Misc

  • update committer info (#15289)
  • Typo fix in plan_memory relase -> release. (#15299)
  • indent changes (#15321)
  • Had a few PRs merged. Hope to become an official contributor and potentially a commiter. (#15451)
  • cuda/cuDNN lib version checking. Force cuDNN v7 usage. (#15449)
  • Improve diagnose.py, adding build features info and binary library path. (#15499)
  • update ratcheck for apache-rat 0.13 release (#15417)
  • add myself to interested modules (#15590)
  • 1.5.0 news (#15137)
  • bump up version from 1.5.0 to 1.6.0 on master (#15072)
  • Remove myself from CODEOWNERS (#15617)
  • remove mshadow submodule
  • import mshadow source tree
  • cuDNN support cleanup (#15812)
  • Remove requests_failed_to_import handling
  • Update CODEOWNERS. (#15972)
  • Improve diagnose.py to display environment variables (#15715)
  • Update README.md (#16035)
  • [Dev] update ps-lite dependency (#15936)
  • Typedef cleanup (#15899)
  • add KEY for Tao Lv (#16081)
  • remove 'foo' and other print msg from test (#16088)
  • Revert accidental change to CMakelists (#16040)
  • Update env_var.md (#16145)
  • Update dmlc-core (#16149)
  • adding codeowners (#16165)
  • Factorize CUDA_KERNEL_LOOP used in CUDA kernels (#16197)
  • add code of conduct and conflict resolution (#16343)
  • simple typo error in NEWS.md (#16344)
  • update NEWS.md and README.md (#16385)
  • split issue templates (#16558)
  • Create SECURITY.md (#16573)

How to build MXNet

Please follow the instructions at https://mxnet.incubator.apache.org/get_started

Users that build MXNet from source are recommended to build release 1.6.0 without jemalloc to avoid incompatibilities with llvm's openmp library (details in issue #17043 and PR #17324). This is done for cmake builds by setting USE_JEMALLOC "OFF" in ./CMakeLists.txt, or for make builds with "USE_JEMALLOC = 0" in make/config.mk.

Don't miss a new mxnet release

NewReleases is sending notifications on new releases.