We are happy to announce the availability of MLflow 1.13.0!
Note: The MLflow R package for 1.13.0 is not yet available on CRAN because CRAN's submission system will be offline until January 4.
In addition to bug and documentation fixes, MLflow 1.13.0 includes the following features and improvements:
Features:
New fluent APIs for logging in-memory objects as artifacts:
- Add
mlflow.log_textwhich logs text as an artifact (#3678, @harupy) - Add
mlflow.log_dictwhich logs a dictionary as an artifact (#3685, @harupy) - Add
mlflow.log_figurewhich logs a figure object as an artifact (#3707, @harupy) - Add
mlflow.log_imagewhich logs an image object as an artifact (#3728, @harupy)
UI updates / fixes:
- Add model version link in compact experiment table view
- Add logged/registered model links in experiment runs page view
- Enhance artifact viewer for MLflow models
- Model registry UI settings are now persisted across browser sessions
- Add model version
descriptionfield to model version table
(all merged in #3867, @smurching)
Autologging enhancements:
- Improve robustness of autologging integrations to exceptions (#3682, #3815, dbczumar; #3860, @mohamad-arabi; #3854, #3855, #3861, @harupy)
- Add
disableconfiguration option for autologging (#3682, #3815, dbczumar; #3838, @mohamad-arabi; #3854, #3855, #3861, @harupy) - Add
exclusiveconfiguration option for autologging (#3851, @apurva-koti; #3869, @dbczumar) - Add
log_modelsconfiguration option for autologging (#3663, @mohamad-arabi) - Set tags on autologged runs for easy identification (and add tags to start_run) (#3847, @dbczumar)
More features and improvements:
- Allow Keras models to be saved with
SavedModelformat (#3552, @skylarbpayne) - Add support for
statsmodelsflavor (#3304, @olbapjose) - Add support for nested-run in mlflow R client (#3765, @yitao-li)
- Deploying a model using
mlflow.azureml.deploynow integrates better with the AzureML tracking/registry. (#3419, @trangevi) - Update schema enforcement to handle integers with missing values (#3798, @tomasatdatabricks)
Bug fixes and documentation updates:
- When running an MLflow Project on Databricks, the version of MLflow installed on the Databricks cluster will now match the version used to run the Project (#3880, @FlorisHoogenboom)
- Fix bug where metrics are not logged for single-epoch
tf.kerastraining sessions (#3853, @dbczumar) - Reject boolean types when logging MLflow metrics (#3822, @HCoban)
- Fix alignment of Keras /
tf.Kerasmetric history entries wheninitial_epochis different from zero. (#3575, @garciparedes) - Fix bugs in autologging integrations for newer versions of TensorFlow and Keras (#3735, @dbczumar)
- Drop global
filterwwarningsmodule at import time (#3621, @jogo) - Fix bug that caused preexisting Python loggers to be disabled when using MLflow with the SQLAlchemyStore (#3653, @arthury1n)
- Fix
h5pylibrary incompatibility for exported Keras models (#3667, @tomasatdatabricks)
Small changes, bug fixes and doc updates (#3887, #3882, #3845, #3833, #3830, #3828, #3826, #3825, #3800, #3809, #3807, #3786, #3794, #3731, #3776, #3760, #3771, #3754, #3750, #3749, #3747, #3736, #3701, #3699, #3698, #3658, #3675, @harupy; #3723, @mohamad-arabi; #3650, #3655, @shrinath-suresh; #3850, #3753, #3725, @dmatrix; ##3867, #3670, #3664, @smurching; #3681, @sueann; #3619, @andrewnitu; #3837, @javierluraschi; #3721, @szczeles; #3653, @arthury1n; #3883, #3874, #3870, #3877, #3878, #3815, #3859, #3844, #3703, @dbczumar; #3768, @wentinghu; #3784, @HCoban; #3643, #3649, @arjundc-db; #3864, @AveshCSingh, #3756, @yitao-li)