pypi dagster-slack 0.12.0

latest releases: 0.14.3, 0.14.3rc0, 0.14.2...
3 years ago

0.12.0 “Into The Groove”

Major Changes

  • With the new first-class Pipeline Failure sensors, you can now write sensors to perform arbitrary actions when pipelines in your repo fail using @pipeline_failure_sensor. Out-of-the-box sensors are provided to send emails using make_email_on_pipeline_failure_sensor and slack messages using make_slack_on_pipeline_failure_sensor.

    See the Pipeline Failure Sensor docs to learn more.

  • New first-class Asset sensors help you define sensors that launch pipeline runs or notify appropriate stakeholders when specific asset keys are materialized. This pattern also enables Dagster to infer cross-pipeline dependency links. Check out the docs here!

  • Solid-level retries: A new retry_policy argument to the @solid decorator allows you to easily and flexibly control how specific solids in your pipelines will be retried if they fail by setting a RetryPolicy.

  • Writing tests in Dagster is now even easier, using the new suite of direct invocation apis. Solids, resources, hooks, loggers, sensors, and schedules can all be invoked directly to test their behavior. For example, if you have some solid my_solid that you'd like to test on an input, you can now write assert my_solid(1, "foo") == "bar" (rather than explicitly calling execute_solid()).

  • [Experimental] A new set of experimental core APIs. Among many benefits, these changes unify concepts such as Presets and Partition sets, make it easier to reuse common resources within an environment, make it possible to construct test-specific resources outside of your pipeline definition, and more. These changes are significant and impactful, so we encourage you to try them out and let us know how they feel! You can learn more about the specifics here

  • [Experimental] There’s a new reference deployment for running Dagster on AWS ECS and a new EcsRunLauncher that launches each pipeline run in its own ECS Task.

  • [Experimental] There’s a new k8s_job_executor (https://docs.dagster.io/_apidocs/libraries/dagster-k8s#dagster_k8s.k8s_job_executor)which executes each solid of your pipeline in a separate Kubernetes job. This addition means that you can now choose at runtime (https://docs.dagster.io/deployment/guides/kubernetes/deploying-with-helm#executor) between single pod and multi-pod isolation for solids in your run. Previously this was only configurable for the entire deployment- you could either use the K8sRunLauncher with the default executors (in process and multiprocess) for low isolation, or you could use the CeleryK8sRunLauncher with the celery_k8s_job_executor for pod-level isolation. Now, your instance can be configured with the K8sRunLauncher and you can choose between the default executors or the k8s_job_executor.

New since 0.11.16

  • Using the @schedule, @resource, or @sensor decorator no longer requires a context parameter. If you are not using the context parameter in these, you can now do this:

    @schedule(cron_schedule="* * * * *", pipeline_name="my_pipeline")
    def my_schedule():
        return {}
    
    @resource
    def my_resource():
        return "foo"
    
    @sensor(pipeline_name="my_pipeline")
    def my_sensor():
        return RunRequest(run_config={})
    
  • Dynamic mapping and collect features are no longer marked “experimental”. DynamicOutputDefinition and DynamicOutput can now be imported directly from dagster.

  • Added repository_name property on SensorEvaluationContext, which is name of the repository that the sensor belongs to.

  • get_mapping_key is now available on SolidExecutionContext , allowing for discerning which downstream branch of a DynamicOutput you are in.

  • When viewing a run in Dagit, you can now download its debug file directly from the run view. This can be loaded into dagit-debug.

  • [dagster-dbt] A new dbt_cli_resource simplifies the process of working with dbt projects in your pipelines, and allows for a wide range of potential uses. Check out the integration guide for examples!

Bugfixes

  • Fixed a bug when retry from failure with fan-in solids didn’t load the right input source correctly. Now the fan-in solids can load the persistent source from corresponding previous runs if retry from failure.
  • Fixed a bug in the k8s_job_executor that caused solid tag user defined Kubernetes config to not be applied to the Kubernetes jobs.
  • Fixed an issue in dagstermill when concurrently running pipelines that contain multiple dagstermill solids with inputs of the same name.

Breaking Changes

  • The deprecated SystemCronScheduler and K8sScheduler schedulers have been removed. All schedules are now executed using the dagster-daemon proess. See the deployment docs for more information about how to use the dagster-daemon process to run your schedules.

  • If you have written a custom run launcher, the arguments to the launch_run function have changed in order to enable faster run launches. launch_run now takes in a LaunchRunContext object. Additionally, run launchers should now obtain the PipelinePythonOrigin to pass as an argument to dagster api execute_run. See the implementation of DockerRunLauncher for an example of the new way to write run launchers.

  • [helm] .Values.dagsterDaemon.queuedRunCoordinator has had its schema altered. It is now referenced at .Values.dagsterDaemon.runCoordinator.
    Previously, if you set up your run coordinator configuration in the following manner:

    dagsterDaemon:
      queuedRunCoordinator:
        enabled: true
        module: dagster.core.run_coordinator
        class: QueuedRunCoordinator
        config:
          max_concurrent_runs: 25
          tag_concurrency_limits: []
          dequeue_interval_seconds: 30
    

    It is now configured like:

    dagsterDaemon:
      runCoordinator:
        enabled: true
        type: QueuedRunCoordinator
        config:
          queuedRunCoordinator:
          maxConcurrentRuns: 25
          tagConcurrencyLimits: []
          dequeueIntervalSeconds: 30
    
  • The method events_for_asset_key on DagsterInstance has been deprecated and will now issue a warning. This method was previously used in our asset sensor example code. This can be replaced by calls using the new DagsterInstance API get_event_records. The example code in our sensor documentation has been updated to use our new APIs as well.

Community Contributions

Experimental

  • You can now configure the EcsRunLauncher to use an existing Task Definition of your choosing. By default, it continues to register its own Task Definition for each run.

Don't miss a new dagster-slack release

NewReleases is sending notifications on new releases.