Highlights
- Add class
etna.auto.Tune
for tuning hyperparameters - Extend functionality of class
etna.auto.Auto
to include a tuning stage - Add notebook about AutoML
- Add utilities for estimating number of folds for backtesting and forecasting and integrate them into CLI
- Add parameter for setting the start of prediction into CLI
- Add
etna.transforms.ExogShiftTransform
to shift all exogenous variables - Add
etna.models.DeepStateModel
- Update requirements for
holidays
,scipy
,ruptures
,sqlalchemy
,tsfresh
- Optimize
make_samples
ofetna.models.RNNNet
andetna.models.MLPNet
- Add parameter
fast_redundancy
inetna.analysis.feature_selection.mrmm
andetna.transforms.MRMRFeatureSelectionTransform
to speed it up
Full changelog
Added
- Notebook
forecast_interpretation.ipynb
with forecast decomposition (#1220) - Exogenous variables shift transform
ExogShiftTransform
(#1254) - Parameter
start_timestamp
to forecast CLI command (#1265) DeepStateModel
(#1253)- Function
estimate_max_n_folds
for folds number estimation (#1279) - Parameters
estimate_n_folds
andcontext_size
to forecast and backtest CLI commands (#1284) - Class
Tune
for hyperparameter optimization within existing pipeline (#1200) - Add
etna.distributions
for using it instead of usingoptuna.distributions
(#1292)
Changed
- Set the default value of
final_model
toLinearRegression(positive=True)
in the constructor ofStackingEnsemble
(#1238) - Add microseconds to
FileLogger
's directory name (#1264) - Inherit
SaveMixin
fromAbstractSaveable
for mypy checker (#1261) - Update requirements for
holidays
andscipy
, change saving library frompickle
todill
inSaveMixin
(#1268) - Update requirement for
ruptures
, add requirement forsqlalchemy
(#1276) - Optimize
make_samples
ofRNNNet
andMLPNet
(#1281) - Remove
to_be_fixed
from inference tests onSpecialDaysTransform
(#1283) - Rewrite
TimeSeriesImputerTransform
to work without per-segment wrapper (#1293) - Add default
params_to_tune
for catboost models (#1185) - Add default
params_to_tune
forProphetModel
(#1203) - Add default
params_to_tune
forSARIMAXModel
, change default parameters for the model (#1206) - Add default
params_to_tune
for linear models (#1204) - Add default
params_to_tune
forSeasonalMovingAverageModel
,MovingAverageModel
,NaiveModel
andDeadlineMovingAverageModel
(#1208) - Add default
params_to_tune
forDeepARModel
andTFTModel
(#1210) - Add default
params_to_tune
forHoltWintersModel
,HoltModel
andSimpleExpSmoothingModel
(#1209) - Add default
params_to_tune
forRNNModel
andMLPModel
(#1218) - Add default
params_to_tune
forDateFlagsTransform
,TimeFlagsTransform
,SpecialDaysTransform
andFourierTransform
(#1228) - Add default
params_to_tune
forMedianOutliersTransform
,DensityOutliersTransform
andPredictionIntervalOutliersTransform
(#1231) - Add default
params_to_tune
forTimeSeriesImputerTransform
(#1232) - Add default
params_to_tune
forDifferencingTransform
,MedianTransform
,MaxTransform
,MinTransform
,QuantileTransform
,StdTransform
,MeanTransform
,MADTransform
,MinMaxDifferenceTransform
,SumTransform
,BoxCoxTransform
,YeoJohnsonTransform
,MaxAbsScalerTransform
,MinMaxScalerTransform
,RobustScalerTransform
andStandardScalerTransform
(#1233) - Add default
params_to_tune
forLabelEncoderTransform
(#1242) - Add default
params_to_tune
forChangePointsSegmentationTransform
,ChangePointsTrendTransform
,ChangePointsLevelTransform
,TrendTransform
,LinearTrendTransform
,TheilSenTrendTransform
andSTLTransform
(#1243) - Add default
params_to_tune
forTreeFeatureSelectionTransform
,MRMRFeatureSelectionTransform
andGaleShapleyFeatureSelectionTransform
(#1250) - Add tuning stage into
Auto.fit
(#1272) - Add
params_to_tune
intoTune
init (#1282) - Skip duplicates during
Tune.fit
, skip duplicates intop_k
, add AutoML notebook (#1285) - Add parameter
fast_redundancy
inmrmm
, fix relevance calculation inget_model_relevance_table
(#1294)
Fixed
- Fix
plot_backtest
andplot_backtest_interactive
on one-step forecast (1260) - Fix
BaseReconciliator
to work onpandas==1.1.5
(#1229) - Fix
TSDataset.make_future
to handle hierarchy, quantiles, target components (#1248) - Fix warning during creation of
ResampleWithDistributionTransform
(#1230) - Add deep copy for copying attributes of
TSDataset
(#1241) - Add
tsfresh
into optional dependencies, remove instruction aboutpip install tsfresh
(#1246) - Fix
DeepARModel
andTFTModel
to work with changedprediction_size
(#1251) - Fix problems with flake8 B023 (#1252)
- Fix problem with swapped forecast methods in HierarchicalPipeline (#1259)
- Fix problem with segment name "target" in
StackingEnsemble
(#1262) - Fix
BasePipeline.forecast
when prediction intervals are estimated on history data with presence of NaNs (#1291) - Teach
BaseMixin.set_params
to work with nestedlist
andtuple
(#1201) - Fix
get_anomalies_prediction_interval
to work when segments have different start date (#1296) - Fix
classification
notebook to downloadFordA
dataset without error (#1299) - Fix signature of
Auto.fit
,Tune.fit
to not have a breaking change (#1300)