github numpy/numpy v1.23.4

latest releases: v2.1.3, v2.1.2, v2.1.1...
2 years ago

NumPy 1.23.4 Release Notes

NumPy 1.23.4 is a maintenance release that fixes bugs discovered after
the 1.23.3 release and keeps the build infrastructure current. The main
improvements are fixes for some annotation corner cases, a fix for a
long time nested_iters memory leak, and a fix of complex vector dot
for very large arrays. The Python versions supported for this release
are 3.8-3.11.

Note that the mypy version needs to be 0.981+ if you test using Python
3.10.7, otherwise the typing tests will fail.

Contributors

A total of 8 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Bas van Beek
  • Charles Harris
  • Matthew Barber
  • Matti Picus
  • Ralf Gommers
  • Ross Barnowski
  • Sebastian Berg
  • Sicheng Zeng +

Pull requests merged

A total of 13 pull requests were merged for this release.

  • #22368: BUG: Add __array_api_version__ to numpy.array_api namespace
  • #22370: MAINT: update sde toolkit to 9.0, fix download link
  • #22382: BLD: use macos-11 image on azure, macos-1015 is deprecated
  • #22383: MAINT: random: remove get_info from "extending with Cython"...
  • #22384: BUG: Fix complex vector dot with more than NPY_CBLAS_CHUNK elements
  • #22387: REV: Loosen lookfor's import try/except again
  • #22388: TYP,ENH: Mark numpy.typing protocols as runtime checkable
  • #22389: TYP,MAINT: Change more overloads to play nice with pyright
  • #22390: TST,TYP: Bump mypy to 0.981
  • #22391: DOC: Update delimiter param description.
  • #22392: BUG: Memory leaks in numpy.nested_iters
  • #22413: REL: Prepare for the NumPy 1.23.4 release.
  • #22424: TST: Fix failing aarch64 wheel builds.

Checksums

MD5

90a3d95982490cfeeef22c0f7cbd874f  numpy-1.23.4-cp310-cp310-macosx_10_9_x86_64.whl
c3cae63394db6c82fd2cb5700fc5917d  numpy-1.23.4-cp310-cp310-macosx_11_0_arm64.whl
b3ff0878de205f56c38fd7dcab80081f  numpy-1.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e2b086ca2229209f2f996c2f9a38bf9c  numpy-1.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
44cc8bb112ca737520cf986fff92dfb0  numpy-1.23.4-cp310-cp310-win32.whl
21c8e5fdfba2ff953e446189379cf0c9  numpy-1.23.4-cp310-cp310-win_amd64.whl
27445a9c85977cb8efa682a4b993347f  numpy-1.23.4-cp311-cp311-macosx_10_9_x86_64.whl
11ef4b7dfdaa37604cb881f3ca4459db  numpy-1.23.4-cp311-cp311-macosx_11_0_arm64.whl
b3c77344274f91514f728a454fd471fa  numpy-1.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
43aef7f984cd63d95c11fb74dd59ef0b  numpy-1.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
637fe21b585228c9670d6e002bf8047f  numpy-1.23.4-cp311-cp311-win32.whl
f529edf9b849d6e3b8cdb5120ae5b81a  numpy-1.23.4-cp311-cp311-win_amd64.whl
76c61ce36317a7e509663829c6844fd9  numpy-1.23.4-cp38-cp38-macosx_10_9_x86_64.whl
2133f6893eef41cd9331c7d0271044c4  numpy-1.23.4-cp38-cp38-macosx_11_0_arm64.whl
5ccb3aa6fb8cb9e20ec336e315d01dec  numpy-1.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
da71f34a4df0b98e4d9e17906dd57b07  numpy-1.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a318978f51fb80a17c2381e39194e906  numpy-1.23.4-cp38-cp38-win32.whl
eac810d6bc43830bf151ea55cd0ded93  numpy-1.23.4-cp38-cp38-win_amd64.whl
4cf0a6007abe42564c7380dbf92a26ce  numpy-1.23.4-cp39-cp39-macosx_10_9_x86_64.whl
2e005bedf129ce8bafa6f550537f3740  numpy-1.23.4-cp39-cp39-macosx_11_0_arm64.whl
10aa210311fcd19a03f6c5495824a306  numpy-1.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6301298a67999657a0878b64eeed09f2  numpy-1.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
76144e575a3c3863ea22e03cdf022d8a  numpy-1.23.4-cp39-cp39-win32.whl
8291dd66ef5451b4db2da55c21535757  numpy-1.23.4-cp39-cp39-win_amd64.whl
7cc095b18690071828b5b620d5ec40e7  numpy-1.23.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
63742f15e8bfa215c893136bbfc6444f  numpy-1.23.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4ed382e55abc09c89a34db047692f6a6  numpy-1.23.4-pp38-pypy38_pp73-win_amd64.whl
d9ffd2c189633486ec246e61d4b947a0  numpy-1.23.4.tar.gz

SHA256

95d79ada05005f6f4f337d3bb9de8a7774f259341c70bc88047a1f7b96a4bcb2  numpy-1.23.4-cp310-cp310-macosx_10_9_x86_64.whl
926db372bc4ac1edf81cfb6c59e2a881606b409ddc0d0920b988174b2e2a767f  numpy-1.23.4-cp310-cp310-macosx_11_0_arm64.whl
c237129f0e732885c9a6076a537e974160482eab8f10db6292e92154d4c67d71  numpy-1.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a8365b942f9c1a7d0f0dc974747d99dd0a0cdfc5949a33119caf05cb314682d3  numpy-1.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2341f4ab6dba0834b685cce16dad5f9b6606ea8a00e6da154f5dbded70fdc4dd  numpy-1.23.4-cp310-cp310-win32.whl
d331afac87c92373826af83d2b2b435f57b17a5c74e6268b79355b970626e329  numpy-1.23.4-cp310-cp310-win_amd64.whl
488a66cb667359534bc70028d653ba1cf307bae88eab5929cd707c761ff037db  numpy-1.23.4-cp311-cp311-macosx_10_9_x86_64.whl
ce03305dd694c4873b9429274fd41fc7eb4e0e4dea07e0af97a933b079a5814f  numpy-1.23.4-cp311-cp311-macosx_11_0_arm64.whl
8981d9b5619569899666170c7c9748920f4a5005bf79c72c07d08c8a035757b0  numpy-1.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7a70a7d3ce4c0e9284e92285cba91a4a3f5214d87ee0e95928f3614a256a1488  numpy-1.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5e13030f8793e9ee42f9c7d5777465a560eb78fa7e11b1c053427f2ccab90c79  numpy-1.23.4-cp311-cp311-win32.whl
7607b598217745cc40f751da38ffd03512d33ec06f3523fb0b5f82e09f6f676d  numpy-1.23.4-cp311-cp311-win_amd64.whl
7ab46e4e7ec63c8a5e6dbf5c1b9e1c92ba23a7ebecc86c336cb7bf3bd2fb10e5  numpy-1.23.4-cp38-cp38-macosx_10_9_x86_64.whl
a8aae2fb3180940011b4862b2dd3756616841c53db9734b27bb93813cd79fce6  numpy-1.23.4-cp38-cp38-macosx_11_0_arm64.whl
8c053d7557a8f022ec823196d242464b6955a7e7e5015b719e76003f63f82d0f  numpy-1.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a0882323e0ca4245eb0a3d0a74f88ce581cc33aedcfa396e415e5bba7bf05f68  numpy-1.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
dada341ebb79619fe00a291185bba370c9803b1e1d7051610e01ed809ef3a4ba  numpy-1.23.4-cp38-cp38-win32.whl
0fe563fc8ed9dc4474cbf70742673fc4391d70f4363f917599a7fa99f042d5a8  numpy-1.23.4-cp38-cp38-win_amd64.whl
c67b833dbccefe97cdd3f52798d430b9d3430396af7cdb2a0c32954c3ef73894  numpy-1.23.4-cp39-cp39-macosx_10_9_x86_64.whl
f76025acc8e2114bb664294a07ede0727aa75d63a06d2fae96bf29a81747e4a7  numpy-1.23.4-cp39-cp39-macosx_11_0_arm64.whl
12ac457b63ec8ded85d85c1e17d85efd3c2b0967ca39560b307a35a6703a4735  numpy-1.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
95de7dc7dc47a312f6feddd3da2500826defdccbc41608d0031276a24181a2c0  numpy-1.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f2f390aa4da44454db40a1f0201401f9036e8d578a25f01a6e237cea238337ef  numpy-1.23.4-cp39-cp39-win32.whl
f260da502d7441a45695199b4e7fd8ca87db659ba1c78f2bbf31f934fe76ae0e  numpy-1.23.4-cp39-cp39-win_amd64.whl
61be02e3bf810b60ab74e81d6d0d36246dbfb644a462458bb53b595791251911  numpy-1.23.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
296d17aed51161dbad3c67ed6d164e51fcd18dbcd5dd4f9d0a9c6055dce30810  numpy-1.23.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4d52914c88b4930dafb6c48ba5115a96cbab40f45740239d9f4159c4ba779962  numpy-1.23.4-pp38-pypy38_pp73-win_amd64.whl
ed2cc92af0efad20198638c69bb0fc2870a58dabfba6eb722c933b48556c686c  numpy-1.23.4.tar.gz

Don't miss a new numpy release

NewReleases is sending notifications on new releases.