github numpy/numpy v1.22.2

latest releases: v1.24.0.dev0, v1.22.4, v1.21.6...
3 months ago

NumPy 1.22.2 Release Notes

The NumPy 1.22.2 is maintenance release that fixes bugs discovered after
the 1.22.1 release. Notable fixes are:

  • Several build related fixes for downstream projects and other
    platforms.
  • Various Annotation fixes/additions.
  • Numpy wheels for Windows will use the 1.41 tool chain, fixing
    downstream link problems for projects using NumPy provided libraries
    on Windows.
  • Deal with CVE-2021-41495 complaint.

The Python versions supported for this release are 3.8-3.10.

Contributors

A total of 14 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Andrew J. Hesford +
  • Bas van Beek
  • Brénainn Woodsend +
  • Charles Harris
  • Hood Chatham
  • Janus Heide +
  • Leo Singer
  • Matti Picus
  • Mukulika Pahari
  • Niyas Sait
  • Pearu Peterson
  • Ralf Gommers
  • Sebastian Berg
  • Serge Guelton

Pull requests merged

A total of 21 pull requests were merged for this release.

  • #20842: BLD: Add NPY_DISABLE_SVML env var to opt out of SVML
  • #20843: BUG: Fix build of third party extensions with Py_LIMITED_API
  • #20844: TYP: Fix pyright being unable to infer the real and imag...
  • #20845: BUG: Fix comparator function signatures
  • #20906: BUG: Avoid importing numpy.distutils on import numpy.testing
  • #20907: MAINT: remove outdated mingw32 fseek support
  • #20908: TYP: Relax the return type of np.vectorize
  • #20909: BUG: fix f2py's define for threading when building with Mingw
  • #20910: BUG: distutils: fix building mixed C/Fortran extensions
  • #20912: DOC,TST: Fix Pandas code example as per new release
  • #20935: TYP, MAINT: Add annotations for flatiter.__setitem__
  • #20936: MAINT, TYP: Added missing where typehints in fromnumeric.pyi
  • #20937: BUG: Fix build_ext interaction with non numpy extensions
  • #20938: BUG: Fix missing intrinsics for windows/arm64 target
  • #20945: REL: Prepare for the NumPy 1.22.2 release.
  • #20982: MAINT: f2py: don't generate code that triggers -Wsometimes-uninitialized.
  • #20983: BUG: Fix incorrect return type in reduce without initial value
  • #20984: ENH: review return values for PyArray_DescrNew
  • #20985: MAINT: be more tolerant of setuptools >= 60
  • #20986: BUG: Fix misplaced return.
  • #20992: MAINT: Further small return value validation fixes

Checksums

MD5

2319f8d7c629d0ba3d3d3b1d5605d494  numpy-1.22.2-cp310-cp310-macosx_10_14_x86_64.whl
023c01a6d3aa528f8e88b0837dcab7ed  numpy-1.22.2-cp310-cp310-macosx_11_0_arm64.whl
84b36e8893b811d17a19404c68db7ce6  numpy-1.22.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
744da9614e8272a384b542d129cd17a9  numpy-1.22.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ee012ed5e7c98c6f48026dfa818b2274  numpy-1.22.2-cp310-cp310-win_amd64.whl
73e4fdcf398327bc4241dc38b6d10211  numpy-1.22.2-cp38-cp38-macosx_10_14_x86_64.whl
9fcbca2a614af3b9a37456643ab1c99d  numpy-1.22.2-cp38-cp38-macosx_11_0_arm64.whl
b7e0d4a19867d33765c7187d1390eef4  numpy-1.22.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dc8d79d75588737ea77fe85a4f05365a  numpy-1.22.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
05906141c095148c53c043c381e6fabe  numpy-1.22.2-cp38-cp38-win32.whl
05d3b6d34c0fa031e69ec0476e8d4c9c  numpy-1.22.2-cp38-cp38-win_amd64.whl
1449889d856de0e88437fa76d3284e00  numpy-1.22.2-cp39-cp39-macosx_10_14_x86_64.whl
e25666ab6ec0692368f328b7b98c27a3  numpy-1.22.2-cp39-cp39-macosx_11_0_arm64.whl
59e3013894bcc6267054c746d9339cf8  numpy-1.22.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7606b9898c20d2b2aa7fc7018bc9c5cd  numpy-1.22.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2686a1495c620e85842967bf8a5f1b2f  numpy-1.22.2-cp39-cp39-win32.whl
54432a84807ab69ac3432e6090d5a169  numpy-1.22.2-cp39-cp39-win_amd64.whl
4dbecace42595742485b854b213341b6  numpy-1.22.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5b506b01ef454f39272ca75de1c7f61c  numpy-1.22.2.tar.gz
a903008d992b77cb68129173c0f61f60  numpy-1.22.2.zip

SHA256

515a8b6edbb904594685da6e176ac9fbea8f73a5ebae947281de6613e27f1956  numpy-1.22.2-cp310-cp310-macosx_10_14_x86_64.whl
76a4f9bce0278becc2da7da3b8ef854bed41a991f4226911a24a9711baad672c  numpy-1.22.2-cp310-cp310-macosx_11_0_arm64.whl
168259b1b184aa83a514f307352c25c56af111c269ffc109d9704e81f72e764b  numpy-1.22.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3556c5550de40027d3121ebbb170f61bbe19eb639c7ad0c7b482cd9b560cd23b  numpy-1.22.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
aafa46b5a39a27aca566198d3312fb3bde95ce9677085efd02c86f7ef6be4ec7  numpy-1.22.2-cp310-cp310-win_amd64.whl
55535c7c2f61e2b2fc817c5cbe1af7cb907c7f011e46ae0a52caa4be1f19afe2  numpy-1.22.2-cp38-cp38-macosx_10_14_x86_64.whl
60cb8e5933193a3cc2912ee29ca331e9c15b2da034f76159b7abc520b3d1233a  numpy-1.22.2-cp38-cp38-macosx_11_0_arm64.whl
0b536b6840e84c1c6a410f3a5aa727821e6108f3454d81a5cd5900999ef04f89  numpy-1.22.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2638389562bda1635b564490d76713695ff497242a83d9b684d27bb4a6cc9d7a  numpy-1.22.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6767ad399e9327bfdbaa40871be4254d1995f4a3ca3806127f10cec778bd9896  numpy-1.22.2-cp38-cp38-win32.whl
03ae5850619abb34a879d5f2d4bb4dcd025d6d8fb72f5e461dae84edccfe129f  numpy-1.22.2-cp38-cp38-win_amd64.whl
d76a26c5118c4d96e264acc9e3242d72e1a2b92e739807b3b69d8d47684b6677  numpy-1.22.2-cp39-cp39-macosx_10_14_x86_64.whl
15efb7b93806d438e3bc590ca8ef2f953b0ce4f86f337ef4559d31ec6cf9d7dd  numpy-1.22.2-cp39-cp39-macosx_11_0_arm64.whl
badca914580eb46385e7f7e4e426fea6de0a37b9e06bec252e481ae7ec287082  numpy-1.22.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
94dd11d9f13ea1be17bac39c1942f527cbf7065f94953cf62dfe805653da2f8f  numpy-1.22.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8cf33634b60c9cef346663a222d9841d3bbbc0a2f00221d6bcfd0d993d5543f6  numpy-1.22.2-cp39-cp39-win32.whl
59153979d60f5bfe9e4c00e401e24dfe0469ef8da6d68247439d3278f30a180f  numpy-1.22.2-cp39-cp39-win_amd64.whl
4a176959b6e7e00b5a0d6f549a479f869829bfd8150282c590deee6d099bbb6e  numpy-1.22.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
093d513a460fd94f94c16193c3ef29b2d69a33e482071e3d6d6e561a700587a6  numpy-1.22.2.tar.gz
076aee5a3763d41da6bef9565fdf3cb987606f567cd8b104aded2b38b7b47abf  numpy-1.22.2.zip

Don't miss a new numpy release

NewReleases is sending notifications on new releases.