github numpy/numpy v1.19.1

latest releases: v2.1.3, v2.1.2, v2.1.1...
4 years ago

NumPy 1.19.1 Release Notes

NumPy 1.19.1 fixes several bugs found in the 1.19.0 release, replaces
several functions deprecated in the upcoming Python-3.9 release, has
improved support for AIX, and has a number of development related
updates to keep CI working with recent upstream changes.

This release supports Python 3.6-3.8. Cython >= 0.29.21 needs to be
used when building with Python 3.9 for testing purposes.

Contributors

A total of 15 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Abhinav Reddy +
  • Anirudh Subramanian
  • Antonio Larrosa +
  • Charles Harris
  • Chunlin Fang
  • Eric Wieser
  • Etienne Guesnet +
  • Kevin Sheppard
  • Matti Picus
  • Raghuveer Devulapalli
  • Roman Yurchak
  • Ross Barnowski
  • Sayed Adel
  • Sebastian Berg
  • Tyler Reddy

Pull requests merged

A total of 25 pull requests were merged for this release.

  • #16649: MAINT, CI: disable Shippable cache
  • #16652: MAINT: Replace PyUString_GET_SIZE with PyUnicode_GetLength.
  • #16654: REL: Fix outdated docs link
  • #16656: BUG: raise IEEE exception on AIX
  • #16672: BUG: Fix bug in AVX complex absolute while processing array of...
  • #16693: TST: Add extra debugging information to CPU features detection
  • #16703: BLD: Add CPU entry for Emscripten / WebAssembly
  • #16705: TST: Disable Python 3.9-dev testing.
  • #16714: MAINT: Disable use_hugepages in case of ValueError
  • #16724: BUG: Fix PyArray_SearchSorted signature.
  • #16768: MAINT: Fixes for deprecated functions in scalartypes.c.src
  • #16772: MAINT: Remove unneeded call to PyUnicode_READY
  • #16776: MAINT: Fix deprecated functions in scalarapi.c
  • #16779: BLD, ENH: Add RPATH support for AIX
  • #16780: BUG: Fix default fallback in genfromtxt
  • #16784: BUG: Added missing return after raising error in methods.c
  • #16795: BLD: update cython to 0.29.21
  • #16832: MAINT: setuptools 49.2.0 emits a warning, avoid it
  • #16872: BUG: Validate output size in bin- and multinomial
  • #16875: BLD, MAINT: Pin setuptools
  • #16904: DOC: Reconstruct Testing Guideline.
  • #16905: TST, BUG: Re-raise MemoryError exception in test_large_zip's...
  • #16906: BUG, DOC: Fix bad MPL kwarg.
  • #16916: BUG: Fix string/bytes to complex assignment
  • #16922: REL: Prepare for NumPy 1.19.1 release

Checksums

MD5

a57df319841a487b22b932aa99562fd8  numpy-1.19.1-cp36-cp36m-macosx_10_9_x86_64.whl
c86be0ba1efc221cdd3aba05c21ab7a6  numpy-1.19.1-cp36-cp36m-manylinux1_i686.whl
09bb5d4ff277bc2caddc107af963f006  numpy-1.19.1-cp36-cp36m-manylinux1_x86_64.whl
c150ffb56704ff319e8ea525773de49e  numpy-1.19.1-cp36-cp36m-manylinux2010_i686.whl
e7c22cfc5956330df8fc107968472e28  numpy-1.19.1-cp36-cp36m-manylinux2010_x86_64.whl
9255520a51c6aa591489f68ac7a4cb0e  numpy-1.19.1-cp36-cp36m-manylinux2014_aarch64.whl
7de3e77a0cda438724e1d8f312805742  numpy-1.19.1-cp36-cp36m-win32.whl
d6d00a2e7b5bbfa7f5f097e8f99d17a7  numpy-1.19.1-cp36-cp36m-win_amd64.whl
c8bc9f328f3a89ab35c374e9cf36dd80  numpy-1.19.1-cp37-cp37m-macosx_10_9_x86_64.whl
8e2eb1614b6a7ce286a5ddf39805564c  numpy-1.19.1-cp37-cp37m-manylinux1_i686.whl
884540e9a94a9da88cd35311a40e1f98  numpy-1.19.1-cp37-cp37m-manylinux1_x86_64.whl
c8dea76ce437f9795a2c38fc3a94cc64  numpy-1.19.1-cp37-cp37m-manylinux2010_i686.whl
fceff6d052e0729e0bc4725d415a0424  numpy-1.19.1-cp37-cp37m-manylinux2010_x86_64.whl
8a40347a7aa0a78ad652761b18646b94  numpy-1.19.1-cp37-cp37m-manylinux2014_aarch64.whl
6f83733af7f25219b1309ed6e2125b40  numpy-1.19.1-cp37-cp37m-win32.whl
5ffe9aaa1be9790546bf0805349d11de  numpy-1.19.1-cp37-cp37m-win_amd64.whl
9fc17dd30d41000be08a5e76bda7cd13  numpy-1.19.1-cp38-cp38-macosx_10_9_x86_64.whl
e164a68bb255e40835243843fd748786  numpy-1.19.1-cp38-cp38-manylinux1_i686.whl
831327c74d9d0c69adba8c626e09a842  numpy-1.19.1-cp38-cp38-manylinux1_x86_64.whl
8d5cfc3f45d07874d427e9d62dfe6b0d  numpy-1.19.1-cp38-cp38-manylinux2010_i686.whl
08a1030ceea2f30f51e6c39264aec2e3  numpy-1.19.1-cp38-cp38-manylinux2010_x86_64.whl
a4dab4ffba3b1b2600400f89ab065112  numpy-1.19.1-cp38-cp38-manylinux2014_aarch64.whl
3b7770f38ed195e24692d6581e4634a1  numpy-1.19.1-cp38-cp38-win32.whl
8ec6183c736b4eacec8de80c98261af1  numpy-1.19.1-cp38-cp38-win_amd64.whl
a15c1aec844788f6e55c1da12f6bfa86  numpy-1.19.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl
bb6f87f7b2d15a2e2a983b972afbcde5  numpy-1.19.1.tar.gz
2ccca1881b2766040149629614d22a3f  numpy-1.19.1.zip

SHA256

b1cca51512299841bf69add3b75361779962f9cee7d9ee3bb446d5982e925b69  numpy-1.19.1-cp36-cp36m-macosx_10_9_x86_64.whl
c9591886fc9cbe5532d5df85cb8e0cc3b44ba8ce4367bd4cf1b93dc19713da72  numpy-1.19.1-cp36-cp36m-manylinux1_i686.whl
cf1347450c0b7644ea142712619533553f02ef23f92f781312f6a3553d031fc7  numpy-1.19.1-cp36-cp36m-manylinux1_x86_64.whl
ed8a311493cf5480a2ebc597d1e177231984c818a86875126cfd004241a73c3e  numpy-1.19.1-cp36-cp36m-manylinux2010_i686.whl
3673c8b2b29077f1b7b3a848794f8e11f401ba0b71c49fbd26fb40b71788b132  numpy-1.19.1-cp36-cp36m-manylinux2010_x86_64.whl
56ef7f56470c24bb67fb43dae442e946a6ce172f97c69f8d067ff8550cf782ff  numpy-1.19.1-cp36-cp36m-manylinux2014_aarch64.whl
aaf42a04b472d12515debc621c31cf16c215e332242e7a9f56403d814c744624  numpy-1.19.1-cp36-cp36m-win32.whl
082f8d4dd69b6b688f64f509b91d482362124986d98dc7dc5f5e9f9b9c3bb983  numpy-1.19.1-cp36-cp36m-win_amd64.whl
e4f6d3c53911a9d103d8ec9518190e52a8b945bab021745af4939cfc7c0d4a9e  numpy-1.19.1-cp37-cp37m-macosx_10_9_x86_64.whl
5b6885c12784a27e957294b60f97e8b5b4174c7504665333c5e94fbf41ae5d6a  numpy-1.19.1-cp37-cp37m-manylinux1_i686.whl
1bc0145999e8cb8aed9d4e65dd8b139adf1919e521177f198529687dbf613065  numpy-1.19.1-cp37-cp37m-manylinux1_x86_64.whl
5a936fd51049541d86ccdeef2833cc89a18e4d3808fe58a8abeb802665c5af93  numpy-1.19.1-cp37-cp37m-manylinux2010_i686.whl
ef71a1d4fd4858596ae80ad1ec76404ad29701f8ca7cdcebc50300178db14dfc  numpy-1.19.1-cp37-cp37m-manylinux2010_x86_64.whl
b9792b0ac0130b277536ab8944e7b754c69560dac0415dd4b2dbd16b902c8954  numpy-1.19.1-cp37-cp37m-manylinux2014_aarch64.whl
b12e639378c741add21fbffd16ba5ad25c0a1a17cf2b6fe4288feeb65144f35b  numpy-1.19.1-cp37-cp37m-win32.whl
8343bf67c72e09cfabfab55ad4a43ce3f6bf6e6ced7acf70f45ded9ebb425055  numpy-1.19.1-cp37-cp37m-win_amd64.whl
e45f8e981a0ab47103181773cc0a54e650b2aef8c7b6cd07405d0fa8d869444a  numpy-1.19.1-cp38-cp38-macosx_10_9_x86_64.whl
667c07063940e934287993366ad5f56766bc009017b4a0fe91dbd07960d0aba7  numpy-1.19.1-cp38-cp38-manylinux1_i686.whl
480fdd4dbda4dd6b638d3863da3be82873bba6d32d1fc12ea1b8486ac7b8d129  numpy-1.19.1-cp38-cp38-manylinux1_x86_64.whl
935c27ae2760c21cd7354402546f6be21d3d0c806fffe967f745d5f2de5005a7  numpy-1.19.1-cp38-cp38-manylinux2010_i686.whl
309cbcfaa103fc9a33ec16d2d62569d541b79f828c382556ff072442226d1968  numpy-1.19.1-cp38-cp38-manylinux2010_x86_64.whl
7ed448ff4eaffeb01094959b19cbaf998ecdee9ef9932381420d514e446601cd  numpy-1.19.1-cp38-cp38-manylinux2014_aarch64.whl
de8b4a9b56255797cbddb93281ed92acbc510fb7b15df3f01bd28f46ebc4edae  numpy-1.19.1-cp38-cp38-win32.whl
92feb989b47f83ebef246adabc7ff3b9a59ac30601c3f6819f8913458610bdcc  numpy-1.19.1-cp38-cp38-win_amd64.whl
e1b1dc0372f530f26a03578ac75d5e51b3868b9b76cd2facba4c9ee0eb252ab1  numpy-1.19.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl
1396e6c3d20cbfc119195303b0272e749610b7042cc498be4134f013e9a3215c  numpy-1.19.1.tar.gz
b8456987b637232602ceb4d663cb34106f7eb780e247d51a260b84760fd8f491  numpy-1.19.1.zip

Don't miss a new numpy release

NewReleases is sending notifications on new releases.