We are happy to announce the availability of MLflow 1.11.0!
In addition to bug and documentation fixes, MLflow 1.11.0 includes the following features and improvements:
- New
mlflow.sklearn.autolog()
API for automatic logging of metrics, params, and models from scikit-learn model training (#3287, @harupy; #3323, #3358 @dbczumar) - Registered model & model version creation APIs now support specifying an initial
description
(#3271, @sueann) - The R
mlflow_log_model
andmlflow_load_model
APIs now support XGBoost models (#3085, @lorenzwalthert) - New
mlflow.list_run_infos
fluent API for listing run metadata (#3183, @trangevi) - Added section for visualizing and comparing model schemas to model version and model-version-comparison UIs (#3209, @zhidongqu-db)
- Enhanced support for using the model registry across Databricks workspaces: support for registering models to a Databricks workspace from outside the workspace (#3119, @sueann), tracking run-lineage of these models (#3128, #3164, @ankitmathur-db; #3187, @harupy), and calling
mlflow.<flavor>.load_model
against remote Databricks model registries (#3330, @sueann) - UI support for setting/deleting registered model and model version tags (#3187, @harupy)
- UI support for archiving existing staging/production versions of a model when transitioning a new model version to staging/production (#3134, @harupy)
For a comprehensive list of changes, see the release change log, and check out the latest documentation on mlflow.org.