A new model is added to transformers: Gemma 3.
It is added on top of the v4.49.0 release, and can be installed from the following tag: v4.49.0-Gemma-3.
In order to install this version, please install with the following command:
pip install git+https://github.com/huggingface/transformers@v4.49.0-Gemma-3
If fixes are needed, they will be applied to this release; this installation may therefore be considered as stable and improving.
Gemma 3
The model is detailed in the following blog post.
The models and demos using the model are available in the following collection.
A Space to play around with the 12B-it flavor is available here.
Overview
The Gemma 3 model was proposed by Google. It is a vision-language model composed by a SigLIP vision encoder and a Gemma 2 language decoder linked by a multimodal linear projection.
It cuts an image into a fixed number of tokens same way as Siglip if the image does not exceed certain aspect ratio. For images that exceed the given aspect ratio, it crops the image into multiple smaller pacthes and concatenates them with the base image embedding.
One particularity is that the model uses bidirectional attention on all the image tokens. Also, the model interleaves sliding window local attention with full causal attention in the language backbone, where each sixth layer is a full causal attention layer.
Usage tips
- For image+text and image-only inputs use
Gemma3ForConditionalGeneration
. - For text-only inputs use
Gemma3ForCausalLM
for generation to avoid loading the vision tower. - Each sample can contain multiple images, and the number of images can vary between samples. However make sure to pass correctly batched images to the processor, where each batch is a list of one or more images.
- The text passed to the processor should have the
"<start_of_image_>"
token where the images should be inserted. - The processor has its own
apply_chat_template
method to convert chat messages to text that can then be passed as text to the processor. You can also get a vectorized output fromapply_chat_template
. See the examples below for more details on how to use it.
Image cropping for high resolution images
The model supports cropping images into smaller patches when the image aspect ratio exceeds a certain value. By default the images are not cropped and only the base image is forwarded to the model. Users can set do_pan_and_scan=True
to obtain several crops per image along with the base image to improve the quality in DocVQA or similar tasks requiring higher resolution images.
Pan and scan is an inference time optimization to handle images with skewed aspect ratios. When enabled, it improves performance on tasks related to document understanding, infographics, OCR, etc.
from transformers import AutoProcessor
processor = AutoProcessor.from_pretrained("google/gemma-3-4b-it", padding_side="left")
url = "https://media.istockphoto.com/id/1192867753/photo/cow-in-berchida-beach-siniscola.jpg?s=612x612&w=0&k=20&c=v0hjjniwsMNfJSuKWZuIn8pssmD5h5bSN1peBd1CmH4="
messages = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are a helpful assistant."}
]
},
{
"role": "user", "content": [
{"type": "image", "url": url},
{"type": "text", "text": "What is shown in this image?"},
]
},
]
inputs = processor.apply_chat_template(
messages,
tokenize=True,
return_dict=True,
return_tensors="pt",
add_generation_prompt=True,
do_pan_and_scan=True,
).to(model.device)
Usage Example
Single-image Inference
from transformers import AutoProcessor, Gemma3ForConditionalGeneration
model_id = "google/gemma-3-4b-it"
model = Gemma3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
url = "https://media.istockphoto.com/id/1192867753/photo/cow-in-berchida-beach-siniscola.jpg?s=612x612&w=0&k=20&c=v0hjjniwsMNfJSuKWZuIn8pssmD5h5bSN1peBd1CmH4="
messages = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are a helpful assistant."}
]
},
{
"role": "user", "content": [
{"type": "image", "url": url},
{"type": "text", "text": "What is shown in this image?"},
]
},
]
inputs = processor.apply_chat_template(
messages,
tokenize=True,
return_dict=True,
return_tensors="pt",
add_generation_prompt=True,
).to(model.device)
output = model.generate(**inputs, max_new_tokens=50)
print(processor.decode(output[0], skip_special_tokens=True)[inputs.input_ids.shape[1]: ])
Multi-image Inference
from transformers import AutoTokenizer, Gemma3ForCausalLM
model_id = "google/gemma-3-4b-it"
model = Gemma3ForConditionalGeneration.from_pretrained(model_id, device_map="auto")
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
url_cow = "https://media.istockphoto.com/id/1192867753/photo/cow-in-berchida-beach-siniscola.jpg?s=612x612&w=0&k=20&c=v0hjjniwsMNfJSuKWZuIn8pssmD5h5bSN1peBd1CmH4="
url_stop = "https://www.ilankelman.org/stopsigns/australia.jpg"
messages = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are a helpful assistant."}
]
},
{
"role": "user", "content": [
{"type": "image", "url": url_cow},
{"type": "image", "url": url_stop},
{"type": "text", "text": "Are these two images identical?"},
]
},
]
inputs = processor.apply_chat_template(
messages,
tokenize=True,
return_dict=True,
return_tensors="pt",
add_generation_prompt=True,
).to(model.device)
output = model.generate(**inputs, max_new_tokens=50)
print(processor.decode(output[0], skip_special_tokens=True)[inputs.input_ids.shape[1]: ])
Text-only inference
from transformers import AutoTokenizer, Gemma3ForCausalLM
model_id = "google/gemma-3-1b-it"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = Gemma3ForCausalLM.from_pretrained(model_id, device_map="auto")
input_ids = tokenizer("Write me a poem about Machine Learning.", return_tensors="pt").to(model.device)
outputs = model.generate(**input_ids, max_new_tokens=100)
text = tokenizer.batch_decode(outputs, skip_special_tokens=True)
print(text)