The first non pre-release since Oct 2022 with a long list of changes from 0.6.x releases...
May 12, 2023
- Fix Python 3.7 import error re Final[] typing annotation
May 11, 2023
timm
0.9 released, transition from 0.8.xdev releases
May 10, 2023
- Hugging Face Hub downloading is now default, 1132 models on https://huggingface.co/timm, 1163 weights in
timm
- DINOv2 vit feature backbone weights added thanks to Leng Yue
- FB MAE vit feature backbone weights added
- OpenCLIP DataComp-XL L/14 feat backbone weights added
- MetaFormer (poolformer-v2, caformer, convformer, updated poolformer (v1)) w/ weights added by Fredo Guan
- Experimental
get_intermediate_layers
function on vit/deit models for grabbing hidden states (inspired by DINO impl). This is WIP and may change significantly... feedback welcome. - Model creation throws error if
pretrained=True
and no weights exist (instead of continuing with random initialization) - Fix regression with inception / nasnet TF sourced weights with 1001 classes in original classifiers
- bitsandbytes (https://github.com/TimDettmers/bitsandbytes) optimizers added to factory, use
bnb
prefix, iebnbadam8bit
- Misc cleanup and fixes
- Final testing before switching to a 0.9 and bringing
timm
out of pre-release state
April 27, 2023
- 97% of
timm
models uploaded to HF Hub and almost all updated to support multi-weight pretrained configs - Minor cleanup and refactoring of another batch of models as multi-weight added. More fused_attn (F.sdpa) and features_only support, and torchscript fixes.
April 21, 2023
- Gradient accumulation support added to train script and tested (
--grad-accum-steps
), thanks Taeksang Kim - More weights on HF Hub (cspnet, cait, volo, xcit, tresnet, hardcorenas, densenet, dpn, vovnet, xception_aligned)
- Added
--head-init-scale
and--head-init-bias
to train.py to scale classiifer head and set fixed bias for fine-tune - Remove all InplaceABN (
inplace_abn
) use, replaced use in tresnet with standard BatchNorm (modified weights accordingly).
April 12, 2023
- Add ONNX export script, validate script, helpers that I've had kicking around for along time. Tweak 'same' padding for better export w/ recent ONNX + pytorch.
- Refactor dropout args for vit and vit-like models, separate drop_rate into
drop_rate
(classifier dropout),proj_drop_rate
(block mlp / out projections),pos_drop_rate
(position embedding drop),attn_drop_rate
(attention dropout). Also add patch dropout (FLIP) to vit and eva models. - fused F.scaled_dot_product_attention support to more vit models, add env var (TIMM_FUSED_ATTN) to control, and config interface to enable/disable
- Add EVA-CLIP backbones w/ image tower weights, all the way up to 4B param 'enormous' model, and 336x336 OpenAI ViT mode that was missed.
April 5, 2023
- ALL ResNet models pushed to Hugging Face Hub with multi-weight support
- All past
timm
trained weights added with recipe based tags to differentiate - All ResNet strikes back A1/A2/A3 (seed 0) and R50 example B/C1/C2/D weights available
- Add torchvision v2 recipe weights to existing torchvision originals
- See comparison table in https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k_288#model-comparison
- All past
- New ImageNet-12k + ImageNet-1k fine-tunes available for a few anti-aliased ResNet models
resnetaa50d.sw_in12k_ft_in1k
- 81.7 @ 224, 82.6 @ 288resnetaa101d.sw_in12k_ft_in1k
- 83.5 @ 224, 84.1 @ 288seresnextaa101d_32x8d.sw_in12k_ft_in1k
- 86.0 @ 224, 86.5 @ 288seresnextaa101d_32x8d.sw_in12k_ft_in1k_288
- 86.5 @ 288, 86.7 @ 320
March 31, 2023
- Add first ConvNext-XXLarge CLIP -> IN-1k fine-tune and IN-12k intermediate fine-tunes for convnext-base/large CLIP models.
model | top1 | top5 | img_size | param_count | gmacs | macts |
---|---|---|---|---|---|---|
convnext_xxlarge.clip_laion2b_soup_ft_in1k | 88.612 | 98.704 | 256 | 846.47 | 198.09 | 124.45 |
convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384 | 88.312 | 98.578 | 384 | 200.13 | 101.11 | 126.74 |
convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320 | 87.968 | 98.47 | 320 | 200.13 | 70.21 | 88.02 |
convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384 | 87.138 | 98.212 | 384 | 88.59 | 45.21 | 84.49 |
convnext_base.clip_laion2b_augreg_ft_in12k_in1k | 86.344 | 97.97 | 256 | 88.59 | 20.09 | 37.55 |
- Add EVA-02 MIM pretrained and fine-tuned weights, push to HF hub and update model cards for all EVA models. First model over 90% top-1 (99% top-5)! Check out the original code & weights at https://github.com/baaivision/EVA for more details on their work blending MIM, CLIP w/ many model, dataset, and train recipe tweaks.
model | top1 | top5 | param_count | img_size |
---|---|---|---|---|
eva02_large_patch14_448.mim_m38m_ft_in22k_in1k | 90.054 | 99.042 | 305.08 | 448 |
eva02_large_patch14_448.mim_in22k_ft_in22k_in1k | 89.946 | 99.01 | 305.08 | 448 |
eva_giant_patch14_560.m30m_ft_in22k_in1k | 89.792 | 98.992 | 1014.45 | 560 |
eva02_large_patch14_448.mim_in22k_ft_in1k | 89.626 | 98.954 | 305.08 | 448 |
eva02_large_patch14_448.mim_m38m_ft_in1k | 89.57 | 98.918 | 305.08 | 448 |
eva_giant_patch14_336.m30m_ft_in22k_in1k | 89.56 | 98.956 | 1013.01 | 336 |
eva_giant_patch14_336.clip_ft_in1k | 89.466 | 98.82 | 1013.01 | 336 |
eva_large_patch14_336.in22k_ft_in22k_in1k | 89.214 | 98.854 | 304.53 | 336 |
eva_giant_patch14_224.clip_ft_in1k | 88.882 | 98.678 | 1012.56 | 224 |
eva02_base_patch14_448.mim_in22k_ft_in22k_in1k | 88.692 | 98.722 | 87.12 | 448 |
eva_large_patch14_336.in22k_ft_in1k | 88.652 | 98.722 | 304.53 | 336 |
eva_large_patch14_196.in22k_ft_in22k_in1k | 88.592 | 98.656 | 304.14 | 196 |
eva02_base_patch14_448.mim_in22k_ft_in1k | 88.23 | 98.564 | 87.12 | 448 |
eva_large_patch14_196.in22k_ft_in1k | 87.934 | 98.504 | 304.14 | 196 |
eva02_small_patch14_336.mim_in22k_ft_in1k | 85.74 | 97.614 | 22.13 | 336 |
eva02_tiny_patch14_336.mim_in22k_ft_in1k | 80.658 | 95.524 | 5.76 | 336 |
- Multi-weight and HF hub for DeiT and MLP-Mixer based models
March 22, 2023
- More weights pushed to HF hub along with multi-weight support, including:
regnet.py
,rexnet.py
,byobnet.py
,resnetv2.py
,swin_transformer.py
,swin_transformer_v2.py
,swin_transformer_v2_cr.py
- Swin Transformer models support feature extraction (NCHW feat maps for
swinv2_cr_*
, and NHWC for all others) and spatial embedding outputs. - FocalNet (from https://github.com/microsoft/FocalNet) models and weights added with significant refactoring, feature extraction, no fixed resolution / sizing constraint
- RegNet weights increased with HF hub push, SWAG, SEER, and torchvision v2 weights. SEER is pretty poor wrt to performance for model size, but possibly useful.
- More ImageNet-12k pretrained and 1k fine-tuned
timm
weights:rexnetr_200.sw_in12k_ft_in1k
- 82.6 @ 224, 83.2 @ 288rexnetr_300.sw_in12k_ft_in1k
- 84.0 @ 224, 84.5 @ 288regnety_120.sw_in12k_ft_in1k
- 85.0 @ 224, 85.4 @ 288regnety_160.lion_in12k_ft_in1k
- 85.6 @ 224, 86.0 @ 288regnety_160.sw_in12k_ft_in1k
- 85.6 @ 224, 86.0 @ 288 (compare to SWAG PT + 1k FT this is same BUT much lower res, blows SEER FT away)
- Model name deprecation + remapping functionality added (a milestone for bringing 0.8.x out of pre-release). Mappings being added...
- Minor bug fixes and improvements.
Feb 26, 2023
- Add ConvNeXt-XXLarge CLIP pretrained image tower weights for fine-tune & features (fine-tuning TBD) -- see model card
- Update
convnext_xxlarge
default LayerNorm eps to 1e-5 (for CLIP weights, improved stability) - 0.8.15dev0
Feb 20, 2023
- Add 320x320
convnext_large_mlp.clip_laion2b_ft_320
andconvnext_lage_mlp.clip_laion2b_ft_soup_320
CLIP image tower weights for features & fine-tune - 0.8.13dev0 pypi release for latest changes w/ move to huggingface org
Feb 16, 2023
safetensor
checkpoint support added- Add ideas from 'Scaling Vision Transformers to 22 B. Params' (https://arxiv.org/abs/2302.05442) -- qk norm, RmsNorm, parallel block
- Add F.scaled_dot_product_attention support (PyTorch 2.0 only) to
vit_*
,vit_relpos*
,coatnet
/maxxvit
(to start) - Lion optimizer (w/ multi-tensor option) added (https://arxiv.org/abs/2302.06675)
- gradient checkpointing works with
features_only=True
Feb 7, 2023
- New inference benchmark numbers added in results folder.
- Add convnext LAION CLIP trained weights and initial set of in1k fine-tunes
convnext_base.clip_laion2b_augreg_ft_in1k
- 86.2% @ 256x256convnext_base.clip_laiona_augreg_ft_in1k_384
- 86.5% @ 384x384convnext_large_mlp.clip_laion2b_augreg_ft_in1k
- 87.3% @ 256x256convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384
- 87.9% @ 384x384
- Add DaViT models. Supports
features_only=True
. Adapted from https://github.com/dingmyu/davit by Fredo. - Use a common NormMlpClassifierHead across MaxViT, ConvNeXt, DaViT
- Add EfficientFormer-V2 model, update EfficientFormer, and refactor LeViT (closely related architectures). Weights on HF hub.
- New EfficientFormer-V2 arch, significant refactor from original at (https://github.com/snap-research/EfficientFormer). Supports
features_only=True
. - Minor updates to EfficientFormer.
- Refactor LeViT models to stages, add
features_only=True
support to newconv
variants, weight remap required.
- New EfficientFormer-V2 arch, significant refactor from original at (https://github.com/snap-research/EfficientFormer). Supports
- Move ImageNet meta-data (synsets, indices) from
/results
totimm/data/_info
. - Add ImageNetInfo / DatasetInfo classes to provide labelling for various ImageNet classifier layouts in
timm
- Update
inference.py
to use, try:python inference.py /folder/to/images --model convnext_small.in12k --label-type detail --topk 5
- Update
- Ready for 0.8.10 pypi pre-release (final testing).
Jan 20, 2023
-
Add two convnext 12k -> 1k fine-tunes at 384x384
convnext_tiny.in12k_ft_in1k_384
- 85.1 @ 384convnext_small.in12k_ft_in1k_384
- 86.2 @ 384
-
Push all MaxxViT weights to HF hub, and add new ImageNet-12k -> 1k fine-tunes for
rw
base MaxViT and CoAtNet 1/2 models
model | top1 | top5 | samples / sec | Params (M) | GMAC | Act (M) |
---|---|---|---|---|---|---|
maxvit_xlarge_tf_512.in21k_ft_in1k | 88.53 | 98.64 | 21.76 | 475.77 | 534.14 | 1413.22 |
maxvit_xlarge_tf_384.in21k_ft_in1k | 88.32 | 98.54 | 42.53 | 475.32 | 292.78 | 668.76 |
maxvit_base_tf_512.in21k_ft_in1k | 88.20 | 98.53 | 50.87 | 119.88 | 138.02 | 703.99 |
maxvit_large_tf_512.in21k_ft_in1k | 88.04 | 98.40 | 36.42 | 212.33 | 244.75 | 942.15 |
maxvit_large_tf_384.in21k_ft_in1k | 87.98 | 98.56 | 71.75 | 212.03 | 132.55 | 445.84 |
maxvit_base_tf_384.in21k_ft_in1k | 87.92 | 98.54 | 104.71 | 119.65 | 73.80 | 332.90 |
maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k | 87.81 | 98.37 | 106.55 | 116.14 | 70.97 | 318.95 |
maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k | 87.47 | 98.37 | 149.49 | 116.09 | 72.98 | 213.74 |
coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k | 87.39 | 98.31 | 160.80 | 73.88 | 47.69 | 209.43 |
maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k | 86.89 | 98.02 | 375.86 | 116.14 | 23.15 | 92.64 |
maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k | 86.64 | 98.02 | 501.03 | 116.09 | 24.20 | 62.77 |
maxvit_base_tf_512.in1k | 86.60 | 97.92 | 50.75 | 119.88 | 138.02 | 703.99 |
coatnet_2_rw_224.sw_in12k_ft_in1k | 86.57 | 97.89 | 631.88 | 73.87 | 15.09 | 49.22 |
maxvit_large_tf_512.in1k | 86.52 | 97.88 | 36.04 | 212.33 | 244.75 | 942.15 |
coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k | 86.49 | 97.90 | 620.58 | 73.88 | 15.18 | 54.78 |
maxvit_base_tf_384.in1k | 86.29 | 97.80 | 101.09 | 119.65 | 73.80 | 332.90 |
maxvit_large_tf_384.in1k | 86.23 | 97.69 | 70.56 | 212.03 | 132.55 | 445.84 |
maxvit_small_tf_512.in1k | 86.10 | 97.76 | 88.63 | 69.13 | 67.26 | 383.77 |
maxvit_tiny_tf_512.in1k | 85.67 | 97.58 | 144.25 | 31.05 | 33.49 | 257.59 |
maxvit_small_tf_384.in1k | 85.54 | 97.46 | 188.35 | 69.02 | 35.87 | 183.65 |
maxvit_tiny_tf_384.in1k | 85.11 | 97.38 | 293.46 | 30.98 | 17.53 | 123.42 |
maxvit_large_tf_224.in1k | 84.93 | 96.97 | 247.71 | 211.79 | 43.68 | 127.35 |
coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k | 84.90 | 96.96 | 1025.45 | 41.72 | 8.11 | 40.13 |
maxvit_base_tf_224.in1k | 84.85 | 96.99 | 358.25 | 119.47 | 24.04 | 95.01 |
maxxvit_rmlp_small_rw_256.sw_in1k | 84.63 | 97.06 | 575.53 | 66.01 | 14.67 | 58.38 |
coatnet_rmlp_2_rw_224.sw_in1k | 84.61 | 96.74 | 625.81 | 73.88 | 15.18 | 54.78 |
maxvit_rmlp_small_rw_224.sw_in1k | 84.49 | 96.76 | 693.82 | 64.90 | 10.75 | 49.30 |
maxvit_small_tf_224.in1k | 84.43 | 96.83 | 647.96 | 68.93 | 11.66 | 53.17 |
maxvit_rmlp_tiny_rw_256.sw_in1k | 84.23 | 96.78 | 807.21 | 29.15 | 6.77 | 46.92 |
coatnet_1_rw_224.sw_in1k | 83.62 | 96.38 | 989.59 | 41.72 | 8.04 | 34.60 |
maxvit_tiny_rw_224.sw_in1k | 83.50 | 96.50 | 1100.53 | 29.06 | 5.11 | 33.11 |
maxvit_tiny_tf_224.in1k | 83.41 | 96.59 | 1004.94 | 30.92 | 5.60 | 35.78 |
coatnet_rmlp_1_rw_224.sw_in1k | 83.36 | 96.45 | 1093.03 | 41.69 | 7.85 | 35.47 |
maxxvitv2_nano_rw_256.sw_in1k | 83.11 | 96.33 | 1276.88 | 23.70 | 6.26 | 23.05 |
maxxvit_rmlp_nano_rw_256.sw_in1k | 83.03 | 96.34 | 1341.24 | 16.78 | 4.37 | 26.05 |
maxvit_rmlp_nano_rw_256.sw_in1k | 82.96 | 96.26 | 1283.24 | 15.50 | 4.47 | 31.92 |
maxvit_nano_rw_256.sw_in1k | 82.93 | 96.23 | 1218.17 | 15.45 | 4.46 | 30.28 |
coatnet_bn_0_rw_224.sw_in1k | 82.39 | 96.19 | 1600.14 | 27.44 | 4.67 | 22.04 |
coatnet_0_rw_224.sw_in1k | 82.39 | 95.84 | 1831.21 | 27.44 | 4.43 | 18.73 |
coatnet_rmlp_nano_rw_224.sw_in1k | 82.05 | 95.87 | 2109.09 | 15.15 | 2.62 | 20.34 |
coatnext_nano_rw_224.sw_in1k | 81.95 | 95.92 | 2525.52 | 14.70 | 2.47 | 12.80 |
coatnet_nano_rw_224.sw_in1k | 81.70 | 95.64 | 2344.52 | 15.14 | 2.41 | 15.41 |
maxvit_rmlp_pico_rw_256.sw_in1k | 80.53 | 95.21 | 1594.71 | 7.52 | 1.85 | 24.86 |
Jan 11, 2023
- Update ConvNeXt ImageNet-12k pretrain series w/ two new fine-tuned weights (and pre FT
.in12k
tags)convnext_nano.in12k_ft_in1k
- 82.3 @ 224, 82.9 @ 288 (previously released)convnext_tiny.in12k_ft_in1k
- 84.2 @ 224, 84.5 @ 288convnext_small.in12k_ft_in1k
- 85.2 @ 224, 85.3 @ 288
Jan 6, 2023
- Finally got around to adding
--model-kwargs
and--opt-kwargs
to scripts to pass through rare args directly to model classes from cmd linetrain.py /imagenet --model resnet50 --amp --model-kwargs output_stride=16 act_layer=silu
train.py /imagenet --model vit_base_patch16_clip_224 --img-size 240 --amp --model-kwargs img_size=240 patch_size=12
- Cleanup some popular models to better support arg passthrough / merge with model configs, more to go.
Jan 5, 2023
- ConvNeXt-V2 models and weights added to existing
convnext.py
- Paper: ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
- Reference impl: https://github.com/facebookresearch/ConvNeXt-V2 (NOTE: weights currently CC-BY-NC)
Dec 23, 2022 🎄☃
- Add FlexiViT models and weights from https://github.com/google-research/big_vision (check out paper at https://arxiv.org/abs/2212.08013)
- NOTE currently resizing is static on model creation, on-the-fly dynamic / train patch size sampling is a WIP
- Many more models updated to multi-weight and downloadable via HF hub now (convnext, efficientnet, mobilenet, vision_transformer*, beit)
- More model pretrained tag and adjustments, some model names changed (working on deprecation translations, consider main branch DEV branch right now, use 0.6.x for stable use)
- More ImageNet-12k (subset of 22k) pretrain models popping up:
efficientnet_b5.in12k_ft_in1k
- 85.9 @ 448x448vit_medium_patch16_gap_384.in12k_ft_in1k
- 85.5 @ 384x384vit_medium_patch16_gap_256.in12k_ft_in1k
- 84.5 @ 256x256convnext_nano.in12k_ft_in1k
- 82.9 @ 288x288
Dec 8, 2022
- Add 'EVA l' to
vision_transformer.py
, MAE style ViT-L/14 MIM pretrain w/ EVA-CLIP targets, FT on ImageNet-1k (w/ ImageNet-22k intermediate for some)- original source: https://github.com/baaivision/EVA
model | top1 | param_count | gmac | macts | hub |
---|---|---|---|---|---|
eva_large_patch14_336.in22k_ft_in22k_in1k | 89.2 | 304.5 | 191.1 | 270.2 | link |
eva_large_patch14_336.in22k_ft_in1k | 88.7 | 304.5 | 191.1 | 270.2 | link |
eva_large_patch14_196.in22k_ft_in22k_in1k | 88.6 | 304.1 | 61.6 | 63.5 | link |
eva_large_patch14_196.in22k_ft_in1k | 87.9 | 304.1 | 61.6 | 63.5 | link |
Dec 6, 2022
- Add 'EVA g', BEiT style ViT-g/14 model weights w/ both MIM pretrain and CLIP pretrain to
beit.py
.- original source: https://github.com/baaivision/EVA
- paper: https://arxiv.org/abs/2211.07636
model | top1 | param_count | gmac | macts | hub |
---|---|---|---|---|---|
eva_giant_patch14_560.m30m_ft_in22k_in1k | 89.8 | 1014.4 | 1906.8 | 2577.2 | link |
eva_giant_patch14_336.m30m_ft_in22k_in1k | 89.6 | 1013 | 620.6 | 550.7 | link |
eva_giant_patch14_336.clip_ft_in1k | 89.4 | 1013 | 620.6 | 550.7 | link |
eva_giant_patch14_224.clip_ft_in1k | 89.1 | 1012.6 | 267.2 | 192.6 | link |
Dec 5, 2022
- Pre-release (
0.8.0dev0
) of multi-weight support (model_arch.pretrained_tag
). Install withpip install --pre timm
- vision_transformer, maxvit, convnext are the first three model impl w/ support
- model names are changing with this (previous _21k, etc. fn will merge), still sorting out deprecation handling
- bugs are likely, but I need feedback so please try it out
- if stability is needed, please use 0.6.x pypi releases or clone from 0.6.x branch
- Support for PyTorch 2.0 compile is added in train/validate/inference/benchmark, use
--torchcompile
argument - Inference script allows more control over output, select k for top-class index + prob json, csv or parquet output
- Add a full set of fine-tuned CLIP image tower weights from both LAION-2B and original OpenAI CLIP models
model | top1 | param_count | gmac | macts | hub |
---|---|---|---|---|---|
vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k | 88.6 | 632.5 | 391 | 407.5 | link |
vit_large_patch14_clip_336.openai_ft_in12k_in1k | 88.3 | 304.5 | 191.1 | 270.2 | link |
vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k | 88.2 | 632 | 167.4 | 139.4 | link |
vit_large_patch14_clip_336.laion2b_ft_in12k_in1k | 88.2 | 304.5 | 191.1 | 270.2 | link |
vit_large_patch14_clip_224.openai_ft_in12k_in1k | 88.2 | 304.2 | 81.1 | 88.8 | link |
vit_large_patch14_clip_224.laion2b_ft_in12k_in1k | 87.9 | 304.2 | 81.1 | 88.8 | link |
vit_large_patch14_clip_224.openai_ft_in1k | 87.9 | 304.2 | 81.1 | 88.8 | link |
vit_large_patch14_clip_336.laion2b_ft_in1k | 87.9 | 304.5 | 191.1 | 270.2 | link |
vit_huge_patch14_clip_224.laion2b_ft_in1k | 87.6 | 632 | 167.4 | 139.4 | link |
vit_large_patch14_clip_224.laion2b_ft_in1k | 87.3 | 304.2 | 81.1 | 88.8 | link |
vit_base_patch16_clip_384.laion2b_ft_in12k_in1k | 87.2 | 86.9 | 55.5 | 101.6 | link |
vit_base_patch16_clip_384.openai_ft_in12k_in1k | 87 | 86.9 | 55.5 | 101.6 | link |
vit_base_patch16_clip_384.laion2b_ft_in1k | 86.6 | 86.9 | 55.5 | 101.6 | link |
vit_base_patch16_clip_384.openai_ft_in1k | 86.2 | 86.9 | 55.5 | 101.6 | link |
vit_base_patch16_clip_224.laion2b_ft_in12k_in1k | 86.2 | 86.6 | 17.6 | 23.9 | link |
vit_base_patch16_clip_224.openai_ft_in12k_in1k | 85.9 | 86.6 | 17.6 | 23.9 | link |
vit_base_patch32_clip_448.laion2b_ft_in12k_in1k | 85.8 | 88.3 | 17.9 | 23.9 | link |
vit_base_patch16_clip_224.laion2b_ft_in1k | 85.5 | 86.6 | 17.6 | 23.9 | link |
vit_base_patch32_clip_384.laion2b_ft_in12k_in1k | 85.4 | 88.3 | 13.1 | 16.5 | link |
vit_base_patch16_clip_224.openai_ft_in1k | 85.3 | 86.6 | 17.6 | 23.9 | link |
vit_base_patch32_clip_384.openai_ft_in12k_in1k | 85.2 | 88.3 | 13.1 | 16.5 | link |
vit_base_patch32_clip_224.laion2b_ft_in12k_in1k | 83.3 | 88.2 | 4.4 | 5 | link |
vit_base_patch32_clip_224.laion2b_ft_in1k | 82.6 | 88.2 | 4.4 | 5 | link |
vit_base_patch32_clip_224.openai_ft_in1k | 81.9 | 88.2 | 4.4 | 5 | link |
- Port of MaxViT Tensorflow Weights from official impl at https://github.com/google-research/maxvit
- There was larger than expected drops for the upscaled 384/512 in21k fine-tune weights, possible detail missing, but the 21k FT did seem sensitive to small preprocessing
model | top1 | param_count | gmac | macts | hub |
---|---|---|---|---|---|
maxvit_xlarge_tf_512.in21k_ft_in1k | 88.5 | 475.8 | 534.1 | 1413.2 | link |
maxvit_xlarge_tf_384.in21k_ft_in1k | 88.3 | 475.3 | 292.8 | 668.8 | link |
maxvit_base_tf_512.in21k_ft_in1k | 88.2 | 119.9 | 138 | 704 | link |
maxvit_large_tf_512.in21k_ft_in1k | 88 | 212.3 | 244.8 | 942.2 | link |
maxvit_large_tf_384.in21k_ft_in1k | 88 | 212 | 132.6 | 445.8 | link |
maxvit_base_tf_384.in21k_ft_in1k | 87.9 | 119.6 | 73.8 | 332.9 | link |
maxvit_base_tf_512.in1k | 86.6 | 119.9 | 138 | 704 | link |
maxvit_large_tf_512.in1k | 86.5 | 212.3 | 244.8 | 942.2 | link |
maxvit_base_tf_384.in1k | 86.3 | 119.6 | 73.8 | 332.9 | link |
maxvit_large_tf_384.in1k | 86.2 | 212 | 132.6 | 445.8 | link |
maxvit_small_tf_512.in1k | 86.1 | 69.1 | 67.3 | 383.8 | link |
maxvit_tiny_tf_512.in1k | 85.7 | 31 | 33.5 | 257.6 | link |
maxvit_small_tf_384.in1k | 85.5 | 69 | 35.9 | 183.6 | link |
maxvit_tiny_tf_384.in1k | 85.1 | 31 | 17.5 | 123.4 | link |
maxvit_large_tf_224.in1k | 84.9 | 211.8 | 43.7 | 127.4 | link |
maxvit_base_tf_224.in1k | 84.9 | 119.5 | 24 | 95 | link |
maxvit_small_tf_224.in1k | 84.4 | 68.9 | 11.7 | 53.2 | link |
maxvit_tiny_tf_224.in1k | 83.4 | 30.9 | 5.6 | 35.8 | link |
Oct 15, 2022
- Train and validation script enhancements
- Non-GPU (ie CPU) device support
- SLURM compatibility for train script
- HF datasets support (via ReaderHfds)
- TFDS/WDS dataloading improvements (sample padding/wrap for distributed use fixed wrt sample count estimate)
- in_chans !=3 support for scripts / loader
- Adan optimizer
- Can enable per-step LR scheduling via args
- Dataset 'parsers' renamed to 'readers', more descriptive of purpose
- AMP args changed, APEX via
--amp-impl apex
, bfloat16 supportedf via--amp-dtype bfloat16
- main branch switched to 0.7.x version, 0.6x forked for stable release of weight only adds
- master -> main branch rename