Details: https://spacy.io/models/zh#zh_core_web_md
File checksum:
59800d6243672f9cf9f3c286d4307cfea3368aa054826b81106ce4de7d454049
Chinese multi-task CNN trained on OntoNotes. Assigns word vectors, POS tags, dependency parse and named entities. Word vectors trained using FastText CBOW on Wikipedia and OSCAR (Common Crawl).
Feature | Description |
---|---|
Name | zh_core_web_md
|
Version | 2.3.0
|
spaCy | >=2.3.0,<2.4.0
|
Model size | 75 MB |
Pipeline | tagger , parser , ner
|
Vectors | 500000 keys, 20000 unique vectors (300 dimensions) |
Sources | OntoNotes 5 OSCAR (Common Crawl) Wikipedia (20200301) |
License | MIT
|
Author | Explosion |
Label Scheme
Component | Labels |
---|---|
tagger
| AD , AS , BA , CC , CD , CS , DEC , DEG , DER , DEV , DT , ETC , FW , IJ , INF , JJ , LB , LC , M , MSP , NN , NR , NT , OD , ON , P , PN , PU , SB , SP , URL , VA , VC , VE , VV , X , _SP
|
parser
| ROOT , acl , advcl:loc , advmod , advmod:dvp , advmod:loc , advmod:rcomp , amod , amod:ordmod , appos , aux:asp , aux:ba , aux:modal , aux:prtmod , auxpass , case , cc , ccomp , compound:nn , compound:vc , conj , cop , dep , det , discourse , dobj , etc , mark , mark:clf , name , neg , nmod , nmod:assmod , nmod:poss , nmod:prep , nmod:range , nmod:tmod , nmod:topic , nsubj , nsubj:xsubj , nsubjpass , nummod , parataxis:prnmod , punct , xcomp
|
ner
| CARDINAL , DATE , EVENT , FAC , GPE , LANGUAGE , LAW , LOC , MONEY , NORP , ORDINAL , ORG , PERCENT , PERSON , PRODUCT , QUANTITY , TIME , WORK_OF_ART
|
Accuracy
Type | Score |
---|---|
LAS
| 64.43 |
UAS
| 69.39 |
TOKEN_ACC
| 94.58 |
TAGS_ACC
| 90.23 |
ENTS_F
| 68.52 |
ENTS_P
| 70.20 |
ENTS_R
| 66.91 |
Installation
pip install spacy
python -m spacy download zh_core_web_md