Details: https://spacy.io/models/ja#ja_core_news_sm
File checksum:
1a375e7339deb3eb4afa28321f545f1f933ce88082aca8294193f1787f1aa7ab
Japanese multi-task CNN trained on UD_Japanese-GSD v2.6-NE. Assigns context-specific token vectors, POS tags, dependency parses and named entities.
Feature | Description |
---|---|
Name | ja_core_news_sm
|
Version | 2.3.0
|
spaCy | >=2.3.0,<2.4.0
|
Model size | 7 MB |
Pipeline | parser , ner
|
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | UD_Japanese-GSD v2.6 (Omura, Mai; Miyao, Yusuke; Kanayama, Hiroshi; Matsuda, Hiroshi; Wakasa, Aya; Yamashita, Kayo; Asahara, Masayuki; Tanaka, Takaaki; Murawaki, Yugo; Matsumoto, Yuji; Mori, Shinsuke; Uematsu, Sumire; McDonald, Ryan; Nivre, Joakim; Zeman, Daniel) UD_Japanese-GSD v2.6-NE (Megagon Labs Tokyo) SudachiPy (Works Applications) SudachiDict (Works Applications) |
License | CC BY-SA 4.0
|
Author | Explosion and Megagon Labs Tokyo |
Label Scheme
Component | Labels |
---|---|
parser
| ROOT , acl , advcl , advmod , amod , aux , case , cc , ccomp , compound , cop , csubj , dep , det , dislocated , fixed , mark , nmod , nsubj , nummod , obj , obl , punct
|
ner
| CARDINAL , DATE , EVENT , FAC , GPE , LANGUAGE , LAW , LOC , MONEY , MOVEMENT , NORP , ORDINAL , ORG , PERCENT , PERSON , PET_NAME , PHONE , PRODUCT , QUANTITY , TIME , TITLE_AFFIX , WORK_OF_ART
|
Accuracy
Type | Score |
---|---|
LAS
| 86.87 |
UAS
| 88.68 |
TOKEN_ACC
| 97.67 |
ENTS_F
| 59.93 |
ENTS_P
| 64.88 |
ENTS_R
| 55.68 |
Installation
pip install spacy
python -m spacy download ja_core_news_sm