github explosion/spacy-models ja_core_news_md-3.8.0

Downloads Downloads (wheel)

Checksum .tar.gz: a99089e534059923cfbe2e929e19bd66af0cc7815e7631cad846830e38a23ef6
Checksum .whl: 17c3497539bd970546b75e36c274b3fa183511b6ef59a178017aa02dde3a090a

Details: https://spacy.io/models/ja#ja_core_news_md

Japanese pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler.

Feature Description
Name ja_core_news_md
Version 3.8.0
spaCy >=3.8.0,<3.9.0
Default Pipeline tok2vec, morphologizer, parser, attribute_ruler, ner
Components tok2vec, morphologizer, parser, senter, attribute_ruler, ner
Vectors 480443 keys, 20000 unique vectors (300 dimensions)
Sources UD Japanese GSD v2.8 (Omura, Mai; Miyao, Yusuke; Kanayama, Hiroshi; Matsuda, Hiroshi; Wakasa, Aya; Yamashita, Kayo; Asahara, Masayuki; Tanaka, Takaaki; Murawaki, Yugo; Matsumoto, Yuji; Mori, Shinsuke; Uematsu, Sumire; McDonald, Ryan; Nivre, Joakim; Zeman, Daniel)
UD Japanese GSD v2.8 NER (Megagon Labs Tokyo)
chiVe: Japanese Word Embedding with Sudachi & NWJC (chive-1.1-mc90-500k) (Works Applications)
License CC BY-SA 4.0
Author Explosion
Model size 40 MB

Label Scheme

View label scheme (65 labels for 3 components)
Component Labels
morphologizer POS=NOUN, POS=ADP, POS=VERB, POS=SCONJ, POS=AUX, POS=PUNCT, POS=PART, POS=DET, POS=NUM, POS=ADV, POS=PRON, POS=ADJ, POS=PROPN, POS=CCONJ, POS=SYM, POS=NOUN|Polarity=Neg, POS=AUX|Polarity=Neg, POS=SPACE, POS=INTJ, POS=SCONJ|Polarity=Neg
parser ROOT, acl, advcl, advmod, amod, aux, case, cc, ccomp, compound, cop, csubj, dep, det, dislocated, fixed, mark, nmod, nsubj, nummod, obj, obl, punct
ner CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, MOVEMENT, NORP, ORDINAL, ORG, PERCENT, PERSON, PET_NAME, PHONE, PRODUCT, QUANTITY, TIME, TITLE_AFFIX, WORK_OF_ART

Accuracy

Type Score
TOKEN_ACC 99.37
TOKEN_P 97.61
TOKEN_R 97.87
TOKEN_F 97.74
POS_ACC 97.23
MORPH_ACC 0.00
MORPH_MICRO_P 34.01
MORPH_MICRO_R 98.04
MORPH_MICRO_F 50.51
SENTS_P 98.43
SENTS_R 98.82
SENTS_F 98.62
DEP_UAS 91.86
DEP_LAS 90.52
TAG_ACC 97.12
LEMMA_ACC 96.68
ENTS_P 73.56
ENTS_R 67.55
ENTS_F 70.43

Installation

pip install spacy
python -m spacy download ja_core_news_md

Don't miss a new spacy-models release

NewReleases is sending notifications on new releases.