Checksum .tar.gz:
4d4f58147ca570a1f12882f1c5266ae3eafdda5df3e2e8fd4875bfd19a2163ed
Checksum .whl:457d095ddd2243b4546fa5188a9ebd1ac622ba1178ecf0d8517b7334241b4c2c
Details: https://spacy.io/models/ja#ja_core_news_lg
Japanese pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler.
Feature | Description |
---|---|
Name | ja_core_news_lg
|
Version | 3.5.0
|
spaCy | >=3.5.0,<3.6.0
|
Default Pipeline | tok2vec , morphologizer , parser , attribute_ruler , ner
|
Components | tok2vec , morphologizer , parser , senter , attribute_ruler , ner
|
Vectors | 480443 keys, 480443 unique vectors (300 dimensions) |
Sources | UD Japanese GSD v2.8 (Omura, Mai; Miyao, Yusuke; Kanayama, Hiroshi; Matsuda, Hiroshi; Wakasa, Aya; Yamashita, Kayo; Asahara, Masayuki; Tanaka, Takaaki; Murawaki, Yugo; Matsumoto, Yuji; Mori, Shinsuke; Uematsu, Sumire; McDonald, Ryan; Nivre, Joakim; Zeman, Daniel) UD Japanese GSD v2.8 NER (Megagon Labs Tokyo) chiVe: Japanese Word Embedding with Sudachi & NWJC (chive-1.1-mc90-500k) (Works Applications) |
License | CC BY-SA 4.0
|
Author | Explosion |
Model size | 529 MB |
Label Scheme
View label scheme (65 labels for 3 components)
Component | Labels |
---|---|
morphologizer
| POS=NOUN , POS=ADP , POS=VERB , POS=SCONJ , POS=AUX , POS=PUNCT , POS=PART , POS=DET , POS=NUM , POS=ADV , POS=PRON , POS=ADJ , POS=PROPN , POS=CCONJ , POS=SYM , POS=NOUN|Polarity=Neg , POS=AUX|Polarity=Neg , POS=SPACE , POS=INTJ , POS=SCONJ|Polarity=Neg
|
parser
| ROOT , acl , advcl , advmod , amod , aux , case , cc , ccomp , compound , cop , csubj , dep , det , dislocated , fixed , mark , nmod , nsubj , nummod , obj , obl , punct
|
ner
| CARDINAL , DATE , EVENT , FAC , GPE , LANGUAGE , LAW , LOC , MONEY , MOVEMENT , NORP , ORDINAL , ORG , PERCENT , PERSON , PET_NAME , PHONE , PRODUCT , QUANTITY , TIME , TITLE_AFFIX , WORK_OF_ART
|
Accuracy
Type | Score |
---|---|
TOKEN_ACC
| 99.37 |
TOKEN_P
| 97.65 |
TOKEN_R
| 97.90 |
TOKEN_F
| 97.77 |
POS_ACC
| 97.50 |
MORPH_ACC
| 0.00 |
MORPH_MICRO_P
| 34.01 |
MORPH_MICRO_R
| 98.04 |
MORPH_MICRO_F
| 50.51 |
SENTS_P
| 95.56 |
SENTS_R
| 97.63 |
SENTS_F
| 96.59 |
DEP_UAS
| 92.34 |
DEP_LAS
| 91.01 |
TAG_ACC
| 97.12 |
LEMMA_ACC
| 96.71 |
ENTS_P
| 75.47 |
ENTS_R
| 70.82 |
ENTS_F
| 73.07 |
Installation
pip install spacy
python -m spacy download ja_core_news_lg