github explosion/spacy-models ja_core_news_lg-3.5.0

Downloads Downloads (wheel)

Checksum .tar.gz: 4d4f58147ca570a1f12882f1c5266ae3eafdda5df3e2e8fd4875bfd19a2163ed
Checksum .whl: 457d095ddd2243b4546fa5188a9ebd1ac622ba1178ecf0d8517b7334241b4c2c

Details: https://spacy.io/models/ja#ja_core_news_lg

Japanese pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler.

Feature Description
Name ja_core_news_lg
Version 3.5.0
spaCy >=3.5.0,<3.6.0
Default Pipeline tok2vec, morphologizer, parser, attribute_ruler, ner
Components tok2vec, morphologizer, parser, senter, attribute_ruler, ner
Vectors 480443 keys, 480443 unique vectors (300 dimensions)
Sources UD Japanese GSD v2.8 (Omura, Mai; Miyao, Yusuke; Kanayama, Hiroshi; Matsuda, Hiroshi; Wakasa, Aya; Yamashita, Kayo; Asahara, Masayuki; Tanaka, Takaaki; Murawaki, Yugo; Matsumoto, Yuji; Mori, Shinsuke; Uematsu, Sumire; McDonald, Ryan; Nivre, Joakim; Zeman, Daniel)
UD Japanese GSD v2.8 NER (Megagon Labs Tokyo)
chiVe: Japanese Word Embedding with Sudachi & NWJC (chive-1.1-mc90-500k) (Works Applications)
License CC BY-SA 4.0
Author Explosion
Model size 529 MB

Label Scheme

View label scheme (65 labels for 3 components)
Component Labels
morphologizer POS=NOUN, POS=ADP, POS=VERB, POS=SCONJ, POS=AUX, POS=PUNCT, POS=PART, POS=DET, POS=NUM, POS=ADV, POS=PRON, POS=ADJ, POS=PROPN, POS=CCONJ, POS=SYM, POS=NOUN|Polarity=Neg, POS=AUX|Polarity=Neg, POS=SPACE, POS=INTJ, POS=SCONJ|Polarity=Neg
parser ROOT, acl, advcl, advmod, amod, aux, case, cc, ccomp, compound, cop, csubj, dep, det, dislocated, fixed, mark, nmod, nsubj, nummod, obj, obl, punct
ner CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, MOVEMENT, NORP, ORDINAL, ORG, PERCENT, PERSON, PET_NAME, PHONE, PRODUCT, QUANTITY, TIME, TITLE_AFFIX, WORK_OF_ART

Accuracy

Type Score
TOKEN_ACC 99.37
TOKEN_P 97.65
TOKEN_R 97.90
TOKEN_F 97.77
POS_ACC 97.50
MORPH_ACC 0.00
MORPH_MICRO_P 34.01
MORPH_MICRO_R 98.04
MORPH_MICRO_F 50.51
SENTS_P 95.56
SENTS_R 97.63
SENTS_F 96.59
DEP_UAS 92.34
DEP_LAS 91.01
TAG_ACC 97.12
LEMMA_ACC 96.71
ENTS_P 75.47
ENTS_R 70.82
ENTS_F 73.07

Installation

pip install spacy
python -m spacy download ja_core_news_lg

Don't miss a new spacy-models release

NewReleases is sending notifications on new releases.