github explosion/spacy-models en_core_web_trf-3.7.1

Downloads Downloads (wheel)

Checksum .tar.gz: 99b2fb0f49f8d8edf6353b8e953d47d5498e0b39014245d8fe4d2910e77bdaee
Checksum .whl: fba7de3b3263346822716f5d3499a9368068b712478560a4756d23a0cdb55f1f

Details: https://spacy.io/models/en#en_core_web_trf

English transformer pipeline (Transformer(name='roberta-base', piece_encoder='byte-bpe', stride=104, type='roberta', width=768, window=144, vocab_size=50265)). Components: transformer, tagger, parser, ner, attribute_ruler, lemmatizer.

Feature Description
Name en_core_web_trf
Version 3.7.1
spaCy >=3.7.0.dev0,<3.8.0
Default Pipeline transformer, tagger, parser, attribute_ruler, lemmatizer, ner
Components transformer, tagger, parser, attribute_ruler, lemmatizer, ner
Vectors 0 keys, 0 unique vectors (0 dimensions)
Sources OntoNotes 5 (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)
ClearNLP Constituent-to-Dependency Conversion (Emory University)
WordNet 3.0 (Princeton University)
roberta-base (Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and Mandar Joshi and Danqi Chen and Omer Levy and Mike Lewis and Luke Zettlemoyer and Veselin Stoyanov)
License MIT
Author Explosion
Model size 436 MB

Label Scheme

View label scheme (112 labels for 3 components)
Component Labels
tagger $, '', ,, -LRB-, -RRB-, ., :, ADD, AFX, CC, CD, DT, EX, FW, HYPH, IN, JJ, JJR, JJS, LS, MD, NFP, NN, NNP, NNPS, NNS, PDT, POS, PRP, PRP$, RB, RBR, RBS, RP, SYM, TO, UH, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WP$, WRB, XX, ````
parser ROOT, acl, acomp, advcl, advmod, agent, amod, appos, attr, aux, auxpass, case, cc, ccomp, compound, conj, csubj, csubjpass, dative, dep, det, dobj, expl, intj, mark, meta, neg, nmod, npadvmod, nsubj, nsubjpass, nummod, oprd, parataxis, pcomp, pobj, poss, preconj, predet, prep, prt, punct, quantmod, relcl, xcomp
ner CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART

Accuracy

Type Score
TOKEN_ACC 99.86
TOKEN_P 99.57
TOKEN_R 99.58
TOKEN_F 99.57
TAG_ACC 98.13
SENTS_P 94.55
SENTS_R 84.17
SENTS_F 89.06
DEP_UAS 95.25
DEP_LAS 93.91
ENTS_P 89.71
ENTS_R 90.53
ENTS_F 90.12

Installation

pip install spacy
python -m spacy download en_core_web_trf

Don't miss a new spacy-models release

NewReleases is sending notifications on new releases.