Details: https://spacy.io/models/en#en_core_web_sm
File checksum:
ea8c87848b4a97ced174919e08c00c7888a30495ace38d281d455ee270da2c12
English multi-task CNN trained on OntoNotes. Assigns context-specific token vectors, POS tags, dependency parse and named entities.
Feature | Description |
---|---|
Name | en_core_web_sm
|
Version | 2.3.0
|
spaCy | >=2.3.0,<2.4.0
|
Model size | 11 MB |
Pipeline | tagger , parser , ner
|
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | OntoNotes 5 |
License | MIT
|
Author | Explosion |
Label Scheme
Component | Labels |
---|---|
tagger
| $ , '' , , , -LRB- , -RRB- , . , : , ADD , AFX , CC , CD , DT , EX , FW , HYPH , IN , JJ , JJR , JJS , LS , MD , NFP , NN , NNP , NNPS , NNS , PDT , POS , PRP , PRP$ , RB , RBR , RBS , RP , SYM , TO , UH , VB , VBD , VBG , VBN , VBP , VBZ , WDT , WP , WP$ , WRB , XX , _SP , ````
|
parser
| ROOT , acl , acomp , advcl , advmod , agent , amod , appos , attr , aux , auxpass , case , cc , ccomp , compound , conj , csubj , csubjpass , dative , dep , det , dobj , expl , intj , mark , meta , neg , nmod , npadvmod , nsubj , nsubjpass , nummod , oprd , parataxis , pcomp , pobj , poss , preconj , predet , prep , prt , punct , quantmod , relcl , xcomp
|
ner
| CARDINAL , DATE , EVENT , FAC , GPE , LANGUAGE , LAW , LOC , MONEY , NORP , ORDINAL , ORG , PERCENT , PERSON , PRODUCT , QUANTITY , TIME , WORK_OF_ART
|
Accuracy
Type | Score |
---|---|
LAS
| 89.68 |
UAS
| 91.56 |
TOKEN_ACC
| 99.76 |
TAGS_ACC
| 97.05 |
ENTS_F
| 85.36 |
ENTS_P
| 85.46 |
ENTS_R
| 85.25 |
Installation
pip install spacy
python -m spacy download en_core_web_sm