Details: https://spacy.io/models/en#en_core_web_lg
Checksum .tar.gz:
1eb1fafcde97778bc3c13f9da712e37d789f5d1bc2f3314968222cb77f41ab69
Checksum .whl:ad2cd3ed1c0403a89cafcf0ea0ec1e2e05182f7073c0c931b02fe789e44a19b0
English pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler, lemmatizer.
Feature | Description |
---|---|
Name | en_core_web_lg |
Version | 3.0.0 |
spaCy | >=3.0.0,<3.1.0 |
Model size | 742 MB |
Default Pipeline | tok2vec , tagger , parser , ner , attribute_ruler , lemmatizer |
Components | tok2vec , tagger , parser , senter , ner , attribute_ruler , lemmatizer |
Vectors | 684830 keys, 684830 unique vectors (300 dimensions) |
Sources | OntoNotes 5 |
License | MIT |
Author | Explosion |
Label Scheme
View label scheme (114 labels for 4 components)
Component | Labels |
---|---|
tagger | $ , '' , , , -LRB- , -RRB- , . , : , ADD , AFX , CC , CD , DT , EX , FW , HYPH , IN , JJ , JJR , JJS , LS , MD , NFP , NN , NNP , NNPS , NNS , PDT , POS , PRP , PRP$ , RB , RBR , RBS , RP , SYM , TO , UH , VB , VBD , VBG , VBN , VBP , VBZ , WDT , WP , WP$ , WRB , XX , ```` |
parser | ROOT , acl , acomp , advcl , advmod , agent , amod , appos , attr , aux , auxpass , case , cc , ccomp , compound , conj , csubj , csubjpass , dative , dep , det , dobj , expl , intj , mark , meta , neg , nmod , npadvmod , nsubj , nsubjpass , nummod , oprd , parataxis , pcomp , pobj , poss , preconj , predet , prep , prt , punct , quantmod , relcl , xcomp |
senter | I , S |
ner | CARDINAL , DATE , EVENT , FAC , GPE , LANGUAGE , LAW , LOC , MONEY , NORP , ORDINAL , ORG , PERCENT , PERSON , PRODUCT , QUANTITY , TIME , WORK_OF_ART |
Accuracy
Type | Score |
---|---|
TOKEN_ACC | 99.93 |
TAG_ACC | 97.40 |
DEP_UAS | 91.98 |
DEP_LAS | 90.19 |
ENTS_P | 85.91 |
ENTS_R | 85.17 |
ENTS_F | 85.54 |
SENTS_P | 90.15 |
SENTS_R | 87.87 |
SENTS_F | 89.00 |
Installation
pip install spacy
python -m spacy download en_core_web_lg