Breaking Changes
- The
dagster-celery
module has been broken apart to manage dependencies more coherently. There are now three modules:dagster celery
,dagster-celery-k8s
, anddagster-celery-docker
.
- Related to above, the
dagster-celery worker start
command now takes a required-A
parameter which must point to theapp.py
file within the appropriate module. E.g if you are using thecelery_k8s_job_executor
then you must use the-A dagster_celery_k8s.app
option when using thecelery
ordagster-celery
cli tools. Similar for thecelery_docker_executor
:-A dagster_celery_docker.app
must be used.
- Renamed the
input_hydration_config
andoutput_materialization_config
decorators todagster_type_
anddagster_type_materializer
respectively. Renamed DagsterType'sinput_hydration_config
andoutput_materialization_config
arguments toloader
andmaterializer
respectively.
New
- New pipeline scoped runs tab in Dagit
- Add the following Dask Job Queue clusters: moab, sge, lsf, slurm, oar (thanks @DavidKatz-il!)
- K8s resource-requirements for run coordinator pods can be specified using the
dagster-k8s/resource_requirements
tag on pipeline definitions:
@pipeline(
tags={
'dagster-k8s/resource_requirements': {
'requests': {'cpu': '250m', 'memory': '64Mi'},
'limits': {'cpu': '500m', 'memory': '2560Mi'},
}
},
)
def foo_bar_pipeline():
- Added better error messaging in dagit for partition set and schedule configuration errors
- An initial version of the CeleryDockerExecutor was added (thanks @mrdrprofuroboros!). The celery workers will launch tasks in docker containers.
- Experimental: Great Expectations integration is currently under development in the new library dagster-ge. Example usage can be found here