github bentoml/BentoML v1.0.11
BentoML - v1.0.11

latest releases: v1.3.12, v1.3.11, v1.3.10...
23 months ago

🍱 BentoML v1.0.11 is here featuring the introduction of an inference collection and model monitoring API that can be easily integrated with any model monitoring frameworks.

image

  • Introduced the bentoml.monitor API for monitoring any features, predictions, and target data in numerical, categorical, and numerical sequence types.

    import bentoml
    from bentoml.io import Text
    from bentoml.io import NumpyNdarray
    
    CLASS_NAMES = ["setosa", "versicolor", "virginica"]
    
    iris_clf_runner = bentoml.sklearn.get("iris_clf:latest").to_runner()
    svc = bentoml.Service("iris_classifier", runners=[iris_clf_runner])
    
    @svc.api(
        input=NumpyNdarray.from_sample(np.array([4.9, 3.0, 1.4, 0.2], dtype=np.double)),
        output=Text(),
    )
    async def classify(features: np.ndarray) -> str:
        with bentoml.monitor("iris_classifier_prediction") as mon:
            mon.log(features[0], name="sepal length", role="feature", data_type="numerical")
            mon.log(features[1], name="sepal width", role="feature", data_type="numerical")
            mon.log(features[2], name="petal length", role="feature", data_type="numerical")
            mon.log(features[3], name="petal width", role="feature", data_type="numerical")
    
            results = await iris_clf_runner.predict.async_run([features])
            result = results[0]
            category = CLASS_NAMES[result]
    
            mon.log(category, name="pred", role="prediction", data_type="categorical")
        return category
  • Enabled monitoring data collection through log file forwarding using any forwarders (fluentbit, filebeat, logstash) or OTLP exporter implementations.

    • Configuration for monitoring data collection through log files.

      monitoring:
        enabled: true
        type: default
        options:
          log_path: path/to/log/file
    • Configuration for monitoring data collection through an OTLP exporter.

      monitoring:
        enable: true
        type: otlp
        options:
          endpoint: http://localhost:5000
          insecure: true
          credentials: null
          headers: null
          timeout: 10
          compression: null
          meta_sample_rate: 1.0
  • Supported third-party monitoring data collector integrations through BentoML Plugins. See bentoml/plugins repository for more details.

🐳 Improved containerization SDK and CLI options, read more in #3164.

  • Added support for multiple backend builder options (Docker, nerdctl, Podman, Buildah, Buildx) in addition to buildctl (standalone buildkit builder).

  • Improved Python SDK for containerization with different backend builder options.

    import bentoml
    
    bentoml.container.build("iris_classifier:latest", backend="podman", features=["grpc","grpc-reflection"], **kwargs)
  • Improved CLI to include the newly added options.

    bentoml containerize --help
  • Standardized the generated Dockerfile in bentos to be compatible with all build tools for use cases that require building from a Dockerfile directly.

💡 We continue to update the documentation and examples on every release to help the community unlock the full power of BentoML.

What's Changed

New Contributors

Full Changelog: v1.0.10...v1.0.11

Don't miss a new BentoML release

NewReleases is sending notifications on new releases.