This release of ART 1.6.2 provides updates to ART 1.6.
Added
- Added targeted option to
RobustDpatch
(#1069) - Added option
standardise_output
to define provided label format (#1069) - Added property
native_label_is_pytorch_format
to object detectors to define label format expected by the model (#1069)
Changed
- Changed
Dpatch
andRobustDpatch
to work internally with PyTorchFasterRCNN's object detection label format and convert labels if provided inTensorFlowFasterRCNN
's format accordingly using optionstandardise_output
(#1069) - Change
setup.py
to only contain core dependencies ininstall_requires
and added additional install optionstensorflow_image
,tensorflow_audio
,pytorch_image
, andpytorch_audio
(#1116) - Changed check for version of
torch
andtorchvision
inAdversarialPatchPyTorch
to account for suffixes like+cu102
(#1115) - Changed
art.utils.load_iris
to usesklearn.datasets.load_iris
instead of download fromhttps://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
(#1097)
Removed
- Removed unnecessary requirement for
scores
in labelsy
forTensorFlowFasterRCNN.loss_gradient
andPyTorchFasterRCNN.loss_gradient
(#1069)
Fixed
- Fixed docstrings of methods
predict
andloss_gradient
to correctly describe the expected and provided label format (#1069) - Fixed bug of missing transfer of tensor to device
ProjectedGradientDescentPyTorch
(#1076) - Fixed bug resulting in wrong loss gradients calculated with
ScikitlearnLogisticRegression.loss_gradient
(#1065)